文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用临床和行为特征开发用于阿尔茨海默病预测的可解释机器学习模型。

Development of an explainable machine learning model for Alzheimer's disease prediction using clinical and behavioural features.

作者信息

Govindarajan Rajkumar, Thirunadanasikamani K, Napa Komal Kumar, Sathya S, Murugan J Senthil, Priya K G Chandi

机构信息

Department of Computer Science and Engineering, St. Peter's Institute of Higher Education and Research, Avadi, Chennai, India.

Department of Artificial Intelligence and Data Science, Saveetha Engineering College, Chennai, India.

出版信息

MethodsX. 2025 Jul 7;15:103491. doi: 10.1016/j.mex.2025.103491. eCollection 2025 Dec.


DOI:10.1016/j.mex.2025.103491
PMID:40697328
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12281133/
Abstract

This article presents a reproducible machine learning methodology for the early prediction of Alzheimer's disease (AD) using clinical and behavioural data. A comparative analysis of multiple classification algorithms was conducted, with the Gradient Boosting classifier yielding the best performance (accuracy: 93.9 %, F1-score: 91.8 %). To improve interpretability, SHapley Additive exPlanations (SHAP) were integrated into the workflow to quantify feature contributions at both global and individual levels. Key predictive variables such as Mini-Mental State Examination (MMSE), Activities of Daily Living (ADL), cholesterol levels, and functional assessment scores were identified and visualized using SHAP-based insights. A user-friendly, interactive web application was developed using Streamlit, allowing real-time patient data input and transparent model output visualization. This method offers a practical tool for clinicians and researchers to support early diagnosis and personalized risk assessment of AD, thus aiding in timely and informed clinical decision-making. Accurate Prediction: Gradient Boosting model achieved 93.9 % accuracy for early Alzheimer's detection. Explainability: SHAP values provided interpretable insights into key clinical features. Clinical Tool: A Streamlit-based web app enabled real-time, explainable predictions for users.

摘要

本文提出了一种可重复的机器学习方法,用于利用临床和行为数据对阿尔茨海默病(AD)进行早期预测。对多种分类算法进行了比较分析,梯度提升分类器表现最佳(准确率:93.9%,F1分数:91.8%)。为了提高可解释性,将SHapley值加法解释(SHAP)集成到工作流程中,以在全局和个体层面量化特征贡献。使用基于SHAP的见解识别并可视化了关键预测变量,如简易精神状态检查表(MMSE)、日常生活活动能力(ADL)、胆固醇水平和功能评估分数。使用Streamlit开发了一个用户友好的交互式网络应用程序,允许实时输入患者数据并可视化透明的模型输出。该方法为临床医生和研究人员提供了一个实用工具,以支持AD的早期诊断和个性化风险评估,从而有助于及时且明智的临床决策。准确预测:梯度提升模型在早期阿尔茨海默病检测中准确率达到93.9%。可解释性:SHAP值为关键临床特征提供了可解释的见解。临床工具:基于Streamlit的网络应用程序为用户实现了实时、可解释的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/11636b0cd3af/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/11bde54ed3f2/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/ab2eff352ae0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/5285f3b2bb6f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/25288f515c8c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/37d10a050458/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/020e771fc63b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/3e0a0c732d9d/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/7d09b2597671/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/ff570b680823/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/5b93f9e52ddc/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/11636b0cd3af/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/11bde54ed3f2/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/ab2eff352ae0/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/5285f3b2bb6f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/25288f515c8c/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/37d10a050458/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/020e771fc63b/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/3e0a0c732d9d/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/7d09b2597671/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/ff570b680823/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/5b93f9e52ddc/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fef/12281133/11636b0cd3af/gr10.jpg

相似文献

[1]
Development of an explainable machine learning model for Alzheimer's disease prediction using clinical and behavioural features.

MethodsX. 2025-7-7

[2]
Optimizing Alzheimer's disease prediction through ensemble learning and feature interpretability with SHAP-based feature analysis.

Alzheimers Dement (Amst). 2025-8-8

[3]
Development of a machine learning model and a web application for predicting neurological outcome at hospital discharge in spinal cord injury patients.

Spine J. 2025-1-31

[4]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

[5]
Interpretable noninvasive diagnosis of tuberculous pleural effusion using LGBM and SHAP: development and clinical application of a machine learning model.

PeerJ. 2025-5-20

[6]
Machine learning-driven clinical decision support for low bone mineral density: A web-based prediction model with explainable AI integration.

Bone. 2025-7-15

[7]
An artificial intelligence model to predict mortality among hemodialysis patients: A retrospective validated cohort study.

Sci Rep. 2025-7-29

[8]
A Responsible Framework for Assessing, Selecting, and Explaining Machine Learning Models in Cardiovascular Disease Outcomes Among People With Type 2 Diabetes: Methodology and Validation Study.

JMIR Med Inform. 2025-6-27

[9]
Development and validation of an explainable machine learning model for predicting occult lymph node metastasis in early-stage oral tongue squamous cell carcinoma: A multi-center study.

Int J Surg. 2025-8-1

[10]
Machine learning-based nomogram for predicting depressive symptoms in women: A cross-sectional study in Guangdong Province, China.

World J Psychiatry. 2025-8-19

本文引用的文献

[1]
A comprehensive interpretable machine learning framework for mild cognitive impairment and Alzheimer's disease diagnosis.

Sci Rep. 2025-3-11

[2]
Interpretable machine learning-driven biomarker identification and validation for Alzheimer's disease.

Sci Rep. 2024-12-28

[3]
Interpreting artificial intelligence models: a systematic review on the application of LIME and SHAP in Alzheimer's disease detection.

Brain Inform. 2024-4-5

[4]
An explainable machine learning model of cognitive decline derived from speech.

Alzheimers Dement (Amst). 2023-12-27

[5]
An explainable machine learning based prediction model for Alzheimer's disease in China longitudinal aging study.

Front Aging Neurosci. 2023-11-3

[6]
Explainable AI-based Alzheimer's prediction and management using multimodal data.

PLoS One. 2023

[7]
Solving the explainable AI conundrum by bridging clinicians' needs and developers' goals.

NPJ Digit Med. 2023-5-22

[8]
Explainable artificial intelligence for mental health through transparency and interpretability for understandability.

NPJ Digit Med. 2023-1-18

[9]
Explainable AI for clinical and remote health applications: a survey on tabular and time series data.

Artif Intell Rev. 2023

[10]
Data analysis with Shapley values for automatic subject selection in Alzheimer's disease data sets using interpretable machine learning.

Alzheimers Res Ther. 2021-9-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索