D'Amario Luca, Stella Maria Bruna, Edvinsson Tomas, Persico Maurizio, Messinger Johannes, Dau Holger
Department of Chemistry, Ångström Laboratory, Uppsala University Box 523 751 20 Uppsala Sweden
Department of Physics, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany.
Chem Sci. 2022 Aug 30;13(36):10734-10742. doi: 10.1039/d2sc01967a. eCollection 2022 Sep 21.
Structural characterization of transient electrochemical species in the sub-millisecond time scale is the all-time wish of any electrochemist. Presently, common time resolution of structural spectro-electrochemical methods is about 0.1 seconds. Herein, a transient spectro-electrochemical Raman setup of easy implementation is described which allows sub-ms time resolution. The technique studies electrochemical processes by initiating the reaction with an electric potential (or current) pulse and analyses the product with a synchronized laser pulse of the modified Raman spectrometer. The approach was validated by studying a known redox driven isomerization of a Ru-based molecular switch grafted, as monolayer, on a SERS active Au microelectrode. Density-functional-theory calculations confirmed the spectral assignments to sub-ms transient species. This study paves the way to a new generation of time-resolved spectro-electrochemical techniques which will be of fundamental help in the development of next generation electrolizers, fuel cells and batteries.
在亚毫秒时间尺度上对瞬态电化学物种进行结构表征一直是每位电化学家的夙愿。目前,结构光谱电化学方法的常见时间分辨率约为0.1秒。在此,描述了一种易于实现的瞬态光谱电化学拉曼装置,其具有亚毫秒级的时间分辨率。该技术通过用电势(或电流)脉冲引发反应来研究电化学过程,并使用改进的拉曼光谱仪的同步激光脉冲分析产物。通过研究一种已知的基于钌的分子开关的氧化还原驱动异构化反应(该分子开关作为单分子层接枝在具有表面增强拉曼散射活性的金微电极上),验证了该方法。密度泛函理论计算证实了对亚毫秒瞬态物种的光谱归属。这项研究为新一代时间分辨光谱电化学技术铺平了道路,这将对下一代电解槽、燃料电池和电池的开发起到至关重要的帮助。