Suppr超能文献

强度相关的全脑模型在不同状态下的摄动揭示了波动在大脑动力学中的作用。

Strength-dependent perturbation of whole-brain model working in different regimes reveals the role of fluctuations in brain dynamics.

机构信息

Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Department of Physics, University of Buenos Aires, Buenos Aires, Argentina.

出版信息

PLoS Comput Biol. 2022 Nov 2;18(11):e1010662. doi: 10.1371/journal.pcbi.1010662. eCollection 2022 Nov.

Abstract

Despite decades of research, there is still a lack of understanding of the role and generating mechanisms of the ubiquitous fluctuations and oscillations found in recordings of brain dynamics. Here, we used whole-brain computational models capable of presenting different dynamical regimes to reproduce empirical data's turbulence level. We showed that the model's fluctuations regime fitted to turbulence more faithfully reproduces the empirical functional connectivity compared to oscillatory and noise regimes. By applying global and local strength-dependent perturbations and subsequently measuring the responsiveness of the model, we revealed each regime's computational capacity demonstrating that brain dynamics is shifted towards fluctuations to provide much-needed flexibility. Importantly, fluctuation regime stimulation in a brain region within a given resting state network modulates that network, aligned with previous empirical and computational studies. Furthermore, this framework generates specific, testable empirical predictions for human stimulation studies using strength-dependent rather than constant perturbation. Overall, the whole-brain models fitted to the level of empirical turbulence together with functional connectivity unveil that the fluctuation regime best captures empirical data, and the strength-dependent perturbative framework demonstrates how this regime provides maximal flexibility to the human brain.

摘要

尽管已经进行了几十年的研究,但对于在大脑动力学记录中发现的普遍波动和振荡的作用和产生机制,我们仍然缺乏了解。在这里,我们使用了全脑计算模型,这些模型能够呈现不同的动力学状态,以再现经验数据的湍流水平。我们表明,与振荡和噪声状态相比,更符合湍流的模型波动状态能够更忠实地再现经验功能连接。通过应用全局和局部强度相关的扰动,随后测量模型的响应能力,我们揭示了每个状态的计算能力,表明大脑动力学向波动转变以提供急需的灵活性。重要的是,在给定静息状态网络内的大脑区域中进行波动状态刺激会调节该网络,这与之前的经验和计算研究一致。此外,该框架使用依赖于强度的而非恒定的扰动,为人类刺激研究产生了具体的、可测试的经验预测。总的来说,与经验湍流水平以及功能连接一起拟合的全脑模型揭示了波动状态最能捕捉经验数据,而依赖于强度的微扰框架则展示了该状态如何为人类大脑提供最大的灵活性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc6c/9629648/d7f4374ecf4f/pcbi.1010662.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验