Suppr超能文献

在感知估计任务中灵活整合连续的感觉证据。

Flexible integration of continuous sensory evidence in perceptual estimation tasks.

机构信息

Computational Neuroscience Group, Centre de Recerca Matemàtica, 08193 Bellaterra (Barcelona), Spain.

出版信息

Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2214441119. doi: 10.1073/pnas.2214441119. Epub 2022 Nov 2.

Abstract

Temporal accumulation of evidence is crucial for making accurate judgments based on noisy or ambiguous sensory input. The integration process leading to categorical decisions is thought to rely on competition between neural populations, each encoding a discrete categorical choice. How recurrent neural circuits integrate evidence for continuous perceptual judgments is unknown. Here, we show that a continuous bump attractor network can integrate a circular feature, such as stimulus direction, nearly optimally. As required by optimal integration, the population activity of the network unfolds on a two-dimensional manifold, in which the position of the network's activity bump tracks the stimulus average, and, simultaneously, the bump amplitude tracks stimulus uncertainty. Moreover, the temporal weighting of sensory evidence by the network depends on the relative strength of the stimulus compared to the internally generated bump dynamics, yielding either early (primacy), uniform, or late (recency) weighting. The model can flexibly switch between these regimes by changing a single control parameter, the global excitatory drive. We show that this mechanism can quantitatively explain individual temporal weighting profiles of human observers, and we validate the model prediction that temporal weighting impacts reaction times. Our findings point to continuous attractor dynamics as a plausible neural mechanism underlying stimulus integration in perceptual estimation tasks.

摘要

时间上的证据积累对于基于嘈杂或模糊的感觉输入做出准确判断至关重要。被认为依赖于神经元群体之间竞争的整合过程导致了类别决策,每个群体编码一个离散的类别选择。然而,连续感知判断的递归神经网络如何整合证据尚不清楚。在这里,我们表明,连续凸起吸引子网络可以近乎最优地整合圆形特征,例如刺激方向。正如最优整合所要求的那样,网络的群体活动在二维流形上展开,其中网络活动凸起的位置跟踪刺激平均值,同时,凸起幅度跟踪刺激不确定性。此外,网络对感觉证据的时间加权取决于刺激相对于内部产生的凸起动力学的相对强度,从而产生早期(优先)、均匀或晚期(近因)加权。通过改变单个控制参数,即全局兴奋驱动,该模型可以灵活地在这些状态之间切换。我们表明,该机制可以定量解释人类观察者的个体时间加权分布,并验证了模型预测,即时间加权会影响反应时间。我们的发现指出,连续吸引子动力学是感知估计任务中刺激整合的一种合理的神经机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4cc/9659402/a093743c6bcb/pnas.2214441119fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验