Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain.
Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Barcelona, Spain.
Nat Commun. 2021 Feb 24;12(1):1283. doi: 10.1038/s41467-021-21501-z.
Perceptual decisions rely on accumulating sensory evidence. This computation has been studied using either drift diffusion models or neurobiological network models exhibiting winner-take-all attractor dynamics. Although both models can account for a large amount of data, it remains unclear whether their dynamics are qualitatively equivalent. Here we show that in the attractor model, but not in the drift diffusion model, an increase in the stimulus fluctuations or the stimulus duration promotes transitions between decision states. The increase in the number of transitions leads to a crossover between weighting mostly early evidence (primacy) to weighting late evidence (recency), a prediction we validate with psychophysical data. Between these two limiting cases, we found a novel flexible categorization regime, in which fluctuations can reverse initially-incorrect categorizations. This reversal asymmetry results in a non-monotonic psychometric curve, a distinctive feature of the attractor model. Our findings point to correcting decision reversals as an important feature of perceptual decision making.
感知决策依赖于积累的感官证据。这种计算既可以使用漂移扩散模型进行研究,也可以使用表现出胜者全拿吸引子动力学的神经生物学网络模型进行研究。尽管这两种模型都可以解释大量数据,但它们的动态是否在质量上等效仍不清楚。在这里,我们表明,在吸引子模型中,但不是在漂移扩散模型中,刺激波动或刺激持续时间的增加会促进决策状态之间的转变。转变次数的增加导致主要加权早期证据(优先)到加权晚期证据(近因)之间的交叉,我们用心理物理学数据验证了这一预测。在这两个极限情况之间,我们发现了一种新的灵活分类状态,其中波动可以反转最初的错误分类。这种反转不对称性导致了非单调的心理测量曲线,这是吸引子模型的一个独特特征。我们的发现指出,纠正决策反转是感知决策的一个重要特征。