Suppr超能文献

深度学习识别出炎症脂肪是早期结直肠癌淋巴结转移的一个风险因素。

Deep learning identifies inflamed fat as a risk factor for lymph node metastasis in early colorectal cancer.

作者信息

Brockmoeller Scarlet, Echle Amelie, Ghaffari Laleh Narmin, Eiholm Susanne, Malmstrøm Marie Louise, Plato Kuhlmann Tine, Levic Katarina, Grabsch Heike Irmgard, West Nicholas P, Saldanha Oliver Lester, Kouvidi Katerina, Bono Aurora, Heij Lara R, Brinker Titus J, Gögenür Ismayil, Quirke Philip, Kather Jakob Nikolas

机构信息

Pathology & Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK.

Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany.

出版信息

J Pathol. 2022 Mar;256(3):269-281. doi: 10.1002/path.5831. Epub 2021 Dec 28.

Abstract

The spread of early-stage (T1 and T2) adenocarcinomas to locoregional lymph nodes is a key event in disease progression of colorectal cancer (CRC). The cellular mechanisms behind this event are not completely understood and existing predictive biomarkers are imperfect. Here, we used an end-to-end deep learning algorithm to identify risk factors for lymph node metastasis (LNM) status in digitized histopathology slides of the primary CRC and its surrounding tissue. In two large population-based cohorts, we show that this system can predict the presence of more than one LNM in pT2 CRC patients with an area under the receiver operating curve (AUROC) of 0.733 (0.67-0.758) and patients with any LNM with an AUROC of 0.711 (0.597-0.797). Similarly, in pT1 CRC patients, the presence of more than one LNM or any LNM was predictable with an AUROC of 0.733 (0.644-0.778) and 0.567 (0.542-0.597), respectively. Based on these findings, we used the deep learning system to guide human pathology experts towards highly predictive regions for LNM in the whole slide images. This hybrid human observer and deep learning approach identified inflamed adipose tissue as the highest predictive feature for LNM presence. Our study is a first proof of concept that artificial intelligence (AI) systems may be able to discover potentially new biological mechanisms in cancer progression. Our deep learning algorithm is publicly available and can be used for biomarker discovery in any disease setting. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

摘要

早期(T1和T2)腺癌扩散至区域淋巴结是结直肠癌(CRC)疾病进展中的关键事件。这一事件背后的细胞机制尚未完全明确,现有的预测生物标志物也并不完美。在此,我们使用一种端到端的深度学习算法,在原发性CRC及其周围组织的数字化组织病理学切片中识别淋巴结转移(LNM)状态的风险因素。在两个基于大样本人群的队列中,我们发现该系统能够预测pT2 CRC患者出现不止一处LNM,受试者工作特征曲线下面积(AUROC)为0.733(0.67 - 0.758),以及预测出现任何LNM的患者,AUROC为0.711(0.597 - 0.797)。同样,在pT1 CRC患者中,出现不止一处LNM或任何LNM的情况也具有可预测性,AUROC分别为0.733(0.644 - 0.778)和0.567(0.542 - 0.597)。基于这些发现,我们使用深度学习系统引导人类病理学专家在全切片图像中找到LNM的高预测区域。这种人类观察者与深度学习相结合的方法将炎症脂肪组织确定为LNM存在的最高预测特征。我们的研究首次证明了人工智能(AI)系统或许能够发现癌症进展中潜在的新生物学机制。我们的深度学习算法已公开可用,可用于任何疾病背景下的生物标志物发现。© 2021英国及爱尔兰病理学会。由John Wiley & Sons, Ltd.出版。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验