i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar da Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
Acta Biomater. 2023 Jan 1;155:667-683. doi: 10.1016/j.actbio.2022.10.046. Epub 2022 Oct 31.
The host inflammatory response to biomaterials conditions their capacity to promote tissue repair, and macrophage polarization shift from M1 to M2 is determinant in this process. Previous work showed that extracts of a combination between fibrinogen and metallic magnesium materials acted synergistically to reduce macrophage inflammatory phenotype. The hypothesis underlying the current work was that the ability of magnesium-modified fibrinogen scaffolds to modulate macrophage phenotype depends on the concentration of magnesium. Thus, Fibrinogen (Fg) scaffolds incorporating precise concentrations of magnesium sulfate (Mg: 0, 10, 25, 50 mM) were developed and characterized. Mg incorporation in Fg scaffolds increased surface charge, while porosity decreased with increasing Mg concentrations, but only Fg scaffolds with 10 mM of Mg (FgMg10) had significantly improved mechanical properties. Human macrophages cultured on FgMg10 scaffolds, showed increased M2 and decreased M1 polarization, when compared to those cultured on scaffolds with 0, 25 and 50 mM of Mg. Macrophage polarization results were independent of the anion used (chloride or sulfate). Macrophage modulation by FgMg10 scaffolds involved reduced NF-κB p65 nuclear translocation, and impacted production of pro-inflammatory mediators (e.g. IFNγ, IL-12, TNF-⍺, IP-10). Importantly, FgMg10 scaffolds implanted in vivo increased the expression of M2 marker CD163, in macrophages from inflammatory exudates, compared to Sham and Fg-implanted animals, increasing the M2:M1 ratio. A cytokine/chemokine array showed that, while both Fg and FgMg10 scaffolds decreased inflammatory mediators, only FgMg10 decreased IL-1β, IP-10, MIP-2, MDC and MIP-3⍺, compared to Sham-operated animals. This study demonstrated that incorporation of 10mM of Mg modulated inflammation, promoting M2 macrophage polarization in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Developing biomaterials that can modulate inflammation and promote macrophage phenotype switch from M1 to M2 is crucial to promote a regenerative microenvironment. Our previous work showed that extracts of a combination between fibrinogen (Fg) and metallic magnesium (Mg) materials synergistically reduced macrophage pro-inflammatory phenotype. Herein, we tested the hypothesis that macrophage modulation was dependent on Mg concentration. A new family of Fg porous scaffolds incorporating different amounts of Mg (0, 10, 25 and 50 mM) was produced and characterized. We observed that only the combination of Fg scaffolds with 10 mM of Mg (FgMg10) significantly changed the scaffolds mechanical properties and directed macrophages towards a M2 phenotype, reducing the production of inflammatory mediators, both in vitro and in vivo.
宿主对生物材料的炎症反应决定了其促进组织修复的能力,而巨噬细胞从 M1 向 M2 的极化转变是这个过程的关键。先前的工作表明,纤维蛋白原和金属镁材料的组合提取物协同作用,降低了巨噬细胞的炎症表型。当前工作的假设是,镁改性纤维蛋白原支架调节巨噬细胞表型的能力取决于镁的浓度。因此,开发并表征了包含精确浓度硫酸镁(Mg:0、10、25、50 mM)的纤维蛋白原(Fg)支架。Mg 掺入 Fg 支架增加了表面电荷,而随着 Mg 浓度的增加孔隙率降低,但只有含 10 mM Mg 的 Fg 支架(FgMg10)的机械性能有显著提高。与培养在 0、25 和 50 mM Mg 的支架上的巨噬细胞相比,在 FgMg10 支架上培养的人巨噬细胞显示出 M2 极化和 M1 极化减少。与培养在 0、25 和 50 mM Mg 的支架上的巨噬细胞相比,在 FgMg10 支架上培养的人巨噬细胞显示出 M2 极化和 M1 极化减少。巨噬细胞极化结果与使用的阴离子(氯或硫酸盐)无关。FgMg10 支架对巨噬细胞的调节涉及 NF-κB p65 核易位减少,并影响促炎介质的产生(例如 IFNγ、IL-12、TNF-α、IP-10)。重要的是,与 Sham 和 Fg 植入动物相比,FgMg10 支架在体内植入后增加了炎症渗出液中 M2 标志物 CD163 的表达,增加了 M2:M1 比值。细胞因子/趋化因子阵列显示,尽管 Fg 和 FgMg10 支架都降低了促炎介质,但只有 FgMg10 降低了 IL-1β、IP-10、MIP-2、MDC 和 MIP-3α,与 Sham 手术动物相比。这项研究表明,掺入 10mM 的 Mg 可调节炎症,在体外和体内促进 M2 巨噬细胞极化。意义声明:开发能够调节炎症并促进巨噬细胞表型从 M1 向 M2 转变的生物材料对于促进再生微环境至关重要。我们之前的工作表明,纤维蛋白原(Fg)和金属镁(Mg)材料的组合提取物协同作用,显著降低了巨噬细胞的促炎表型。在此,我们检验了这样一个假设,即巨噬细胞的调节取决于 Mg 浓度。生产并表征了一种新型的 Fg 多孔支架,其中包含不同量的 Mg(0、10、25 和 50 mM)。我们观察到,只有 Fg 支架与 10 mM 的 Mg(FgMg10)的组合才能显著改变支架的机械性能,并使巨噬细胞向 M2 表型转变,减少促炎介质的产生,无论是在体外还是体内。