Suppr超能文献

从四个地理上不同的年轻女性群体中采样表明微生物组具有法医地理位置潜力。

Sampling from four geographically divergent young female populations demonstrates forensic geolocation potential in microbiomes.

机构信息

J. Craig Venter Institute, Rockville, MD, 20850, USA.

Noblis, Reston, VA, 20191, USA.

出版信息

Sci Rep. 2022 Nov 3;12(1):18547. doi: 10.1038/s41598-022-21779-z.

Abstract

Studies of human microbiomes using new sequencing techniques have increasingly demonstrated that their ecologies are partly determined by the lifestyle and habits of individuals. As such, significant forensic information could be obtained from high throughput sequencing of the human microbiome. This approach, combined with multiple analytical techniques demonstrates that bacterial DNA can be used to uniquely identify an individual and to provide information about their life and behavioral patterns. However, the transformation of these findings into actionable forensic information, including the geolocation of the samples, remains limited by incomplete understanding of the effects of confounding factors and the paucity of diverse sequences. We obtained 16S rRNA sequences of stool and oral microbiomes collected from 206 young and healthy females from four globally diverse populations, in addition to supporting metadata, including dietary and medical information. Analysis of these microbiomes revealed detectable geolocation signals between the populations, even for populations living within the same city. Accounting for other lifestyle variables, such as diet and smoking, lessened but does not remove the geolocation signal.

摘要

利用新测序技术研究人类微生物组学越来越表明,其生态部分取决于个体的生活方式和习惯。因此,从人类微生物组的高通量测序中可以获得大量法医信息。这种方法结合多种分析技术表明,细菌 DNA 可用于唯一识别个体,并提供有关其生活和行为模式的信息。然而,将这些发现转化为可行的法医信息,包括样本的地理位置,仍然受到对混杂因素影响和缺乏多样性序列的理解不完整的限制。我们从四个全球不同人群中获得了 206 名年轻健康女性的粪便和口腔微生物组的 16S rRNA 序列,以及包括饮食和医疗信息在内的支持元数据。对这些微生物组的分析揭示了人群之间存在可检测的地理位置信号,即使对于生活在同一城市的人群也是如此。考虑到其他生活方式变量,如饮食和吸烟,地理位置信号减弱但并未消除。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96ee/9633824/0a076c5d93ef/41598_2022_21779_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验