Suppr超能文献

利用静息态功能磁共振成像对脑功能连接网络的动态特性进行建模。

Modeling dynamic characteristics of brain functional connectivity networks using resting-state functional MRI.

机构信息

School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

School of Information Science and Technology, Nantong University, Nantong 226019, China; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

出版信息

Med Image Anal. 2021 Jul;71:102063. doi: 10.1016/j.media.2021.102063. Epub 2021 Apr 15.

Abstract

Dynamic network analysis using resting-state functional magnetic resonance imaging (rs-fMRI) provides a great insight into fundamentally dynamic characteristics of human brains, thus providing an efficient solution to automated brain disease identification. Previous studies usually pay less attention to evolution of global network structures over time in each brain's rs-fMRI time series, and also treat network-based feature extraction and classifier training as two separate tasks. To address these issues, we propose a temporal dynamics learning (TDL) method for network-based brain disease identification using rs-fMRI time-series data, through which network feature extraction and classifier training are integrated into the unified framework. Specifically, we first partition rs-fMRI time series into a sequence of segments using overlapping sliding windows, and then construct longitudinally ordered functional connectivity networks. To model the global temporal evolution patterns of these successive networks, we introduce a group-fused Lasso regularizer in our TDL framework, while the specific network architecture is induced by an ℓ-norm regularizer. Besides, we develop an efficient optimization algorithm to solve the proposed objective function via the Alternating Direction Method of Multipliers (ADMM). Compared with previous studies, the proposed TDL model can not only explicitly model the evolving connectivity patterns of global networks over time, but also capture unique characteristics of each network defined at each segment. We evaluate our TDL on three real autism spectrum disorder (ASD) datasets with rs-fMRI data, achieving superior results in ASD identification compared with several state-of-the-art methods.

摘要

使用静息态功能磁共振成像 (rs-fMRI) 的动态网络分析为人类大脑的基本动态特征提供了深入的了解,从而为自动识别脑部疾病提供了有效的解决方案。以前的研究通常较少关注每个大脑 rs-fMRI 时间序列中全局网络结构随时间的演变,并且还将基于网络的特征提取和分类器训练视为两个单独的任务。为了解决这些问题,我们提出了一种使用 rs-fMRI 时间序列数据进行基于网络的脑部疾病识别的时间动态学习 (TDL) 方法,通过该方法将网络特征提取和分类器训练集成到统一的框架中。具体来说,我们首先使用重叠滑动窗口将 rs-fMRI 时间序列划分为一系列片段,然后构建纵向有序的功能连接网络。为了模拟这些连续网络的全局时间演变模式,我们在 TDL 框架中引入了群组融合 Lasso 正则化器,而特定的网络架构则由 l 范数正则化器诱导。此外,我们开发了一种有效的优化算法,通过交替方向乘子法 (ADMM) 来解决所提出的目标函数。与以前的研究相比,所提出的 TDL 模型不仅可以显式地模拟全局网络随时间的演变连接模式,还可以捕获每个网络在每个片段上的独特特征。我们在三个具有 rs-fMRI 数据的真实自闭症谱系障碍 (ASD) 数据集上评估了我们的 TDL,在 ASD 识别方面的表现优于几种最先进的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验