Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
Functional & Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
Psychol Med. 2023 Oct;53(13):6194-6204. doi: 10.1017/S0033291722003439. Epub 2022 Nov 4.
Although aberrant brain regional responses are reported in social anxiety disorder (SAD), little is known about resting-state functional connectivity at the macroscale network level. This study aims to identify functional network abnormalities using a multivariate data-driven method in a relatively large and homogenous sample of SAD patients, and assess their potential diagnostic value.
Forty-six SAD patients and 52 demographically-matched healthy controls (HC) were recruited to undergo clinical evaluation and resting-state functional MRI scanning. We used group independent component analysis to characterize the functional architecture of brain resting-state networks (RSNs) and investigate between-group differences in intra-/inter-network functional network connectivity (FNC). Furtherly, we explored the associations of FNC abnormalities with clinical characteristics, and assessed their ability to discriminate SAD from HC using support vector machine analyses.
SAD patients showed widespread intra-network FNC abnormalities in the default mode network, the subcortical network and the perceptual system (i.e. sensorimotor, auditory and visual networks), and large-scale inter-network FNC abnormalities among those high-order and primary RSNs. Some aberrant FNC signatures were correlated to disease severity and duration, suggesting pathophysiological relevance. Furthermore, intrinsic FNC anomalies allowed individual classification of SAD HC with significant accuracy, indicating potential diagnostic efficacy.
SAD patients show distinct patterns of functional synchronization abnormalities both within and across large-scale RSNs, reflecting or causing a network imbalance of bottom-up response and top-down regulation in cognitive, emotional and sensory domains. Therefore, this could offer insights into the neurofunctional substrates of SAD.
尽管社交焦虑障碍(SAD)患者的大脑区域反应存在异常,但在宏观尺度网络水平上,关于静息态功能连接的了解甚少。本研究旨在通过一种多变量数据驱动的方法,在相对较大且同质的 SAD 患者样本中识别功能网络异常,并评估其潜在的诊断价值。
招募了 46 名 SAD 患者和 52 名年龄匹配的健康对照者(HC)进行临床评估和静息态功能磁共振成像扫描。我们使用组独立成分分析来描述大脑静息态网络(RSN)的功能结构,并研究组间内在网络和内在网络之间功能网络连接(FNC)的差异。进一步,我们探索了 FNC 异常与临床特征的关联,并使用支持向量机分析评估了它们区分 SAD 与 HC 的能力。
SAD 患者在默认模式网络、皮质下网络和感知系统(即感觉运动、听觉和视觉网络)中表现出广泛的内在网络 FNC 异常,以及在这些高阶和主要 RSN 之间的大尺度网络间 FNC 异常。一些异常的 FNC 特征与疾病严重程度和持续时间相关,表明具有病理生理学相关性。此外,内在 FNC 异常可以对 SAD 和 HC 进行个体分类,具有显著的准确性,表明具有潜在的诊断功效。
SAD 患者在大尺度 RSN 内和之间表现出明显的功能同步异常模式,反映或导致认知、情感和感觉领域中自下而上的反应和自上而下的调节的网络失衡。因此,这可以为 SAD 的神经功能基础提供深入的了解。