Suppr超能文献

社交焦虑障碍中异常的大规模脑功能网络动态。

Abnormal large-scale brain functional network dynamics in social anxiety disorder.

机构信息

Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China.

Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China.

出版信息

CNS Neurosci Ther. 2024 Aug;30(8):e14904. doi: 10.1111/cns.14904.

Abstract

AIMS

Although static abnormalities of functional brain networks have been observed in patients with social anxiety disorder (SAD), the brain connectome dynamics at the macroscale network level remain obscure. We therefore used a multivariate data-driven method to search for dynamic functional network connectivity (dFNC) alterations in SAD.

METHODS

We conducted spatial independent component analysis, and used a sliding-window approach with a k-means clustering algorithm, to characterize the recurring states of brain resting-state networks; then state transition metrics and FNC strength in the different states were compared between SAD patients and healthy controls (HC), and the relationship to SAD clinical characteristics was explored.

RESULTS

Four distinct recurring states were identified. Compared with HC, SAD patients demonstrated higher fractional windows and mean dwelling time in the highest-frequency State 3, representing "widely weaker" FNC, but lower in States 2 and 4, representing "locally stronger" and "widely stronger" FNC, respectively. In State 1, representing "widely moderate" FNC, SAD patients showed decreased FNC mainly between the default mode network and the attention and perceptual networks. Some aberrant dFNC signatures correlated with illness duration.

CONCLUSION

These aberrant patterns of brain functional synchronization dynamics among large-scale resting-state networks may provide new insights into the neuro-functional underpinnings of SAD.

摘要

目的

尽管社交焦虑障碍(SAD)患者的功能性大脑网络存在静态异常,但宏观网络层面的大脑连接组动力学仍不清楚。因此,我们使用多变量数据驱动方法来寻找 SAD 中的动态功能网络连接(dFNC)变化。

方法

我们进行了空间独立成分分析,并使用滑动窗口方法和 k-均值聚类算法,来描述大脑静息状态网络的反复状态;然后比较 SAD 患者和健康对照组(HC)之间不同状态下的状态转移指标和 FNC 强度,并探讨其与 SAD 临床特征的关系。

结果

确定了四个不同的反复状态。与 HC 相比,SAD 患者在最高频率的状态 3 中表现出更高的分数窗口和平均停留时间,代表“广泛较弱”的 FNC,但在状态 2 和 4 中较低,分别代表“局部较强”和“广泛较强”的 FNC。在代表“广泛中等”FNC 的状态 1 中,SAD 患者表现出默认模式网络与注意力和感知网络之间的 FNC 减少。一些异常的 dFNC 特征与疾病持续时间相关。

结论

这些在大尺度静息态网络之间的大脑功能同步动力学的异常模式可能为 SAD 的神经功能基础提供新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc95/11303268/3e8d292b24a7/CNS-30-e14904-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验