Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Nat Commun. 2022 Nov 5;13(1):6679. doi: 10.1038/s41467-022-34276-8.
The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.
三维基因组结构在基因表达、细胞分化和病理条件中起着关键作用。阐明精细的染色质结构,特别是调控元件的相互作用,对于理解基因表达的时空调控至关重要。在这项研究中,我们报告了 Hi-TrAC 作为一种无邻近连接、稳健和敏感的技术,可在高分辨率下描绘基因组范围内调控元件之间的染色质相互作用。Hi-TrAC 可以检测到可及区域之间在单个核小体分辨率下的染色质环。通过近五十万个鉴定出的环,我们揭示了整个基因组中调控元件的综合相互作用网络。在整合了转录因子的染色质结合图谱后,我们发现黏连蛋白复合物和 CTCF 负责组织长程染色质环,与结构域形成有关;而 ZNF143 和 HCFC1 则参与了调控元件之间的短程染色质环的构建,直接调节基因表达。因此,我们介绍了一种识别顺式调控元件精细而全面的网络的方法,揭示了转录因子在组织染色质环以实现基因组组织和基因表达方面的复杂性和分工。