Department of Vascular Surgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, PR China; Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, PR China.
Department of Pharmacy, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, PR China.
Exp Neurol. 2023 Jan;359:114266. doi: 10.1016/j.expneurol.2022.114266. Epub 2022 Nov 4.
Mitochondrial autophagy, the elimination of damaged mitochondria through autophagy, contributes to neuron survival in cerebral ischemia. Long non-coding RNAs (lncRNAs)/microRNAs (miRNAs)/mRNAs are important regulatory networks implicated in various biological processes, including cerebral ischemia-reperfusion (I/R) injury. Therefore, this work clarifies a novel RGD1564534-mediated regulatory network on mitochondrial autophagy in cerebral I/R injury.
Differentially expressed lncRNAs in cerebral I/R injury were predicted by bioinformatics analysis. Expression of RGD1564534 was examined in the established middle cerebral artery occlusion (MCAO) rats and oxygen glucose deprivation/reoxygenation (OGD/R)-exposed neurons. We conducted luciferase activity, RNA pull-down and RIP assays to illustrate the interaction among RGD1564534, miR-101a-3p and Dusp1. Gain- or loss-of-function approaches were used to manipulate RGD1564534 and Dusp1 expression. The mechanism of RGD1564534 in cerebral I/R injury was evaluated both in vivo and in vitro.
RGD1564534 was poorly expressed in the MCAO rats and OGD/R-treated cells, while its high expression attenuated nerve damage, cognitive dysfunction, brain white matter and small vessel damage in MCAO rats. In addition, RGD1564534 promoted mitochondrial autophagy and inhibited NLRP3 inflammasome activity. RGD1564534 competitively bound to miR-101a-3p and attenuated its binding to Dusp1, increasing the expression of Dusp1 in neurons. By this mechanism, RGD1564534 enhanced mitochondrial autophagy, reduced NLRP3 inflammasome activity and suppressed the neuron apoptosis induced by OGD/R.
Altogether, RGD1564534 elevates the expression of Dusp1 by competitively binding to miR-101a-3p, which facilitates mitochondrial autophagy-mediated inactivation of NLRP3 inflammasome and thus retards cerebral I/R injury.
线粒体自噬通过自噬消除受损的线粒体,有助于脑缺血中的神经元存活。长链非编码 RNA(lncRNA)/microRNA(miRNA)/mRNA 是参与包括脑缺血再灌注(I/R)损伤在内的各种生物学过程的重要调控网络。因此,本研究阐明了一个新的 RGD1564534 介导的脑 I/R 损伤中线粒体自噬调控网络。
通过生物信息学分析预测脑 I/R 损伤中的差异表达 lncRNA。在建立的大脑中动脉闭塞(MCAO)大鼠和氧葡萄糖剥夺/再氧合(OGD/R)暴露神经元中检测 RGD1564534 的表达。我们进行了荧光素酶活性、RNA 下拉和 RIP 测定,以说明 RGD1564534、miR-101a-3p 和 Dusp1 之间的相互作用。采用增益或缺失功能方法来操纵 RGD1564534 和 Dusp1 的表达。在体内和体外评估了 RGD1564534 在脑 I/R 损伤中的作用机制。
RGD1564534 在 MCAO 大鼠和 OGD/R 处理的细胞中表达水平较低,而其高表达可减轻 MCAO 大鼠的神经损伤、认知功能障碍、脑白质和小血管损伤。此外,RGD1564534 促进线粒体自噬并抑制 NLRP3 炎性体活性。RGD1564534 竞争性结合 miR-101a-3p,减弱其与 Dusp1 的结合,增加神经元中 Dusp1 的表达。通过这种机制,RGD1564534 增强线粒体自噬,降低 NLRP3 炎性体活性,并抑制 OGD/R 诱导的神经元凋亡。
总之,RGD1564534 通过竞争性结合 miR-101a-3p 提高 Dusp1 的表达,促进线粒体自噬介导的 NLRP3 炎性体失活,从而延缓脑 I/R 损伤。