Suppr超能文献

KiU-Net:用于生物医学图像和体积分割的过完备卷积架构。

KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image and Volumetric Segmentation.

出版信息

IEEE Trans Med Imaging. 2022 Apr;41(4):965-976. doi: 10.1109/TMI.2021.3130469. Epub 2022 Apr 1.

Abstract

Most methods for medical image segmentation use U-Net or its variants as they have been successful in most of the applications. After a detailed analysis of these "traditional" encoder-decoder based approaches, we observed that they perform poorly in detecting smaller structures and are unable to segment boundary regions precisely. This issue can be attributed to the increase in receptive field size as we go deeper into the encoder. The extra focus on learning high level features causes U-Net based approaches to learn less information about low-level features which are crucial for detecting small structures. To overcome this issue, we propose using an overcomplete convolutional architecture where we project the input image into a higher dimension such that we constrain the receptive field from increasing in the deep layers of the network. We design a new architecture for im- age segmentation- KiU-Net which has two branches: (1) an overcomplete convolutional network Kite-Net which learns to capture fine details and accurate edges of the input, and (2) U-Net which learns high level features. Furthermore, we also propose KiU-Net 3D which is a 3D convolutional architecture for volumetric segmentation. We perform a detailed study of KiU-Net by performing experiments on five different datasets covering various image modalities. We achieve a good performance with an additional benefit of fewer parameters and faster convergence. We also demonstrate that the extensions of KiU-Net based on residual blocks and dense blocks result in further performance improvements. Code: https://github.com/jeya-maria-jose/KiU-Net-pytorch.

摘要

大多数医学图像分割方法都使用 U-Net 或其变体,因为它们在大多数应用中都取得了成功。在对这些“传统”基于编码器-解码器的方法进行详细分析后,我们观察到它们在检测较小结构方面表现不佳,并且无法精确分割边界区域。这个问题可以归因于我们在编码器中深入时,接收场大小的增加。额外关注学习高级特征导致基于 U-Net 的方法对学习低级别特征的信息较少,而这些特征对于检测小结构至关重要。为了解决这个问题,我们提出使用一个过完备的卷积架构,其中我们将输入图像投影到更高的维度,从而限制网络深层的接收场增加。我们设计了一种新的图像分割架构 KiU-Net,它有两个分支:(1)一个过完备的卷积网络 Kite-Net,它学习捕获输入的精细细节和精确边缘,(2)U-Net,它学习高级特征。此外,我们还提出了 KiU-Net 3D,这是一种用于体积分割的 3D 卷积架构。我们通过在涵盖各种图像模态的五个不同数据集上进行实验,对 KiU-Net 进行了详细研究。我们在参数较少和收敛更快的情况下实现了良好的性能。我们还证明了基于残差块和密集块的 KiU-Net 扩展导致了进一步的性能提升。代码:https://github.com/jeya-maria-jose/KiU-Net-pytorch。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验