Suppr超能文献

基于深度学习的超高分辨率超声定位显微镜

Super-Resolution Ultrasound Localization Microscopy Through Deep Learning.

出版信息

IEEE Trans Med Imaging. 2021 Mar;40(3):829-839. doi: 10.1109/TMI.2020.3037790. Epub 2021 Mar 2.

Abstract

Ultrasound localization microscopy has enabled super-resolution vascular imaging through precise localization of individual ultrasound contrast agents (microbubbles) across numerous imaging frames. However, analysis of high-density regions with significant overlaps among the microbubble point spread responses yields high localization errors, constraining the technique to low-concentration conditions. As such, long acquisition times are required to sufficiently cover the vascular bed. In this work, we present a fast and precise method for obtaining super-resolution vascular images from high-density contrast-enhanced ultrasound imaging data. This method, which we term Deep Ultrasound Localization Microscopy (Deep-ULM), exploits modern deep learning strategies and employs a convolutional neural network to perform localization microscopy in dense scenarios, learning the nonlinear image-domain implications of overlapping RF signals originating from such sets of closely spaced microbubbles. Deep-ULM is trained effectively using realistic on-line synthesized data, enabling robust inference in-vivo under a wide variety of imaging conditions. We show that deep learning attains super-resolution with challenging contrast-agent densities, both in-silico as well as in-vivo. Deep-ULM is suitable for real-time applications, resolving about 70 high-resolution patches ( 128×128 pixels) per second on a standard PC. Exploiting GPU computation, this number increases to 1250 patches per second.

摘要

超声定位显微镜通过在多个成像帧中对单个超声造影剂(微泡)进行精确定位,实现了超分辨率血管成像。然而,在高密度区域中,由于微泡点扩散响应之间存在显著重叠,会导致高定位误差,从而限制了该技术在低浓度条件下的应用。因此,需要长时间采集来充分覆盖血管床。在这项工作中,我们提出了一种从高密度对比增强超声成像数据中获取超分辨率血管图像的快速而精确的方法。我们将这种方法称为深度超声定位显微镜(Deep-ULM),它利用现代深度学习策略,并采用卷积神经网络在密集场景中进行定位显微镜,学习来自这些紧密间隔微泡组的重叠射频信号在图像域中的非线性影响。深度超声定位显微镜通过使用真实的在线合成数据进行有效训练,从而能够在各种成像条件下进行稳健的体内推断。我们表明,深度学习可以在具有挑战性的造影剂密度下实现超分辨率,无论是在模拟环境还是在体内环境中。深度超声定位显微镜适用于实时应用,在标准 PC 上每秒可解析约 70 个高分辨率斑块(128×128 像素)。利用 GPU 计算,这个数字增加到每秒 1250 个斑块。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验