Suppr超能文献

构建并验证用于预测老年心脏手术患者生存情况的列线图

Construction and validation of a nomogram for predicting survival in elderly patients with cardiac surgery.

机构信息

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.

出版信息

Front Public Health. 2022 Oct 19;10:972797. doi: 10.3389/fpubh.2022.972797. eCollection 2022.

Abstract

BACKGROUND

In recent years, the number of elderly patients undergoing cardiac surgery has rapidly increased and is associated with poor outcomes. However, there is still a lack of adequate models for predicting the risk of death after cardiac surgery in elderly patients. This study sought to identify independent risk factors for 1-year all-cause mortality in elderly patients after cardiac surgery and to develop a predictive model.

METHODS

A total of 3,752 elderly patients with cardiac surgery were enrolled from the Medical Information Mart for Intensive Care III (MIMIC-III) dataset and randomly divided into training and validation sets. The primary outcome was the all-cause mortality at 1 year. The Least absolute shrinkage and selection operator (LASSO) regression was used to decrease data dimensionality and select features. Multivariate logistic regression was used to establish the prediction model. The concordance index (C-index), receiver operating characteristic curve (ROC), and decision curve analysis (DCA) were used to measure the predictive performance of the nomogram.

RESULTS

Our results demonstrated that age, sex, Sequential Organ Failure Assessment (SOFA), respiratory rate (RR), creatinine, glucose, and RBC transfusion (red blood cell) were independent factors for elderly patient mortality after cardiac surgery. The C-index of the training and validation sets was 0.744 (95%CI: 0.707-0.781) and 0.751 (95%CI: 0.709-0.794), respectively. The area under the curve (AUC) and decision curve analysis (DCA) results substantiated that the nomogram yielded an excellent performance predicting the 1-year all-cause mortality after cardiac surgery.

CONCLUSIONS

We developed a novel nomogram model for predicting the 1-year all-cause mortality for elderly patients after cardiac surgery, which could be an effective and useful clinical tool for clinicians for tailored therapy and prognosis prediction.

摘要

背景

近年来,接受心脏手术的老年患者数量迅速增加,且与较差的预后相关。然而,目前仍缺乏预测老年患者心脏手术后死亡风险的充分模型。本研究旨在确定心脏手术后老年患者 1 年全因死亡率的独立危险因素,并建立预测模型。

方法

从医疗信息监测器强化护理 III 数据库(MIMIC-III)中纳入 3752 例接受心脏手术的老年患者,并将其随机分为训练集和验证集。主要结局为 1 年全因死亡率。采用最小绝对收缩和选择算子(LASSO)回归法降低数据维度并选择特征。采用多变量逻辑回归建立预测模型。采用一致性指数(C-index)、受试者工作特征曲线(ROC)和决策曲线分析(DCA)评估列线图的预测性能。

结果

结果显示,年龄、性别、序贯器官衰竭评估(SOFA)、呼吸频率(RR)、肌酐、葡萄糖和红细胞输血(红细胞)是心脏手术后老年患者死亡的独立因素。训练集和验证集的 C-index 分别为 0.744(95%CI:0.707-0.781)和 0.751(95%CI:0.709-0.794)。曲线下面积(AUC)和决策曲线分析(DCA)结果表明,该列线图预测心脏手术后 1 年全因死亡率的性能优异。

结论

我们开发了一种预测心脏手术后老年患者 1 年全因死亡率的新型列线图模型,可为临床医生提供个体化治疗和预后预测的有效且有用的临床工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5be1/9626768/a00e21ed9346/fpubh-10-972797-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验