Suppr超能文献

脑电图预测抗抑郁治疗效果:系统评价和荟萃分析。

Electroencephalography for predicting antidepressant treatment success: A systematic review and meta-analysis.

机构信息

Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.

Amsterdam UMC location University of Amsterdam, Department of Psychiatry, Meibergdreef 9, Amsterdam, Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands.

出版信息

J Affect Disord. 2023 Jan 15;321:201-207. doi: 10.1016/j.jad.2022.10.042. Epub 2022 Oct 28.

Abstract

BACKGROUND

Patients suffering from major depressive disorder (MDD) regularly experience non-response to treatment for their depressive episode. Personalized clinical decision making could shorten depressive episodes and reduce patient suffering. Although no clinical tools are currently available, machine learning analysis of electroencephalography (EEG) shows promise in treatment response prediction.

METHODS

With a systematic review and meta-analysis, we evaluated the accuracy of EEG for individual patient response prediction. Importantly, we included only prediction studies that used cross-validation. We used a bivariate model to calculate prediction success, as expressed by area-under the curve, sensitivity and specificity. Furthermore, we analyzed prediction success for separate antidepressant interventions.

RESULTS

15 studies with 12 individual patient samples and a total of 479 patients were included. Research methods varied considerably between studies. Meta-analysis of results from this heterogeneous set of studies resulted in an area under the curve of 0.91, a sensitivity of 83 % (95 % CI 74-89 %), and a specificity of 86 % (95 % CI 81-90 %). Classification performance did not significantly differ between treatments. Although studies were all internally validated, no externally validated studies have been reported. We found substantial risk of bias caused by methodological shortcomings such as non-independent feature selection, though performance of non-biased studies was comparable.

LIMITATIONS

Sample sizes were relatively small and no study used external validation, increasing the risk of overestimation of accuracy.

CONCLUSIONS

Electroencephalography can predict the response to antidepressant treatment with high accuracy. However, future studies with more rigorous validation are needed to produce a clinical tool to guide interventions in MDD.

PROSPERO REGISTRATION NUMBER

CRD42021268169.

摘要

背景

患有重度抑郁症(MDD)的患者经常对其抑郁发作的治疗无反应。个性化的临床决策可以缩短抑郁发作的时间,减少患者的痛苦。尽管目前尚无临床工具,但脑电图(EEG)的机器学习分析在治疗反应预测方面显示出了希望。

方法

通过系统评价和荟萃分析,我们评估了 EEG 对个体患者反应预测的准确性。重要的是,我们仅包括使用交叉验证的预测研究。我们使用双变量模型来计算预测成功率,如曲线下面积、敏感性和特异性。此外,我们还分析了针对不同抗抑郁干预措施的预测成功率。

结果

共纳入了 15 项研究,涉及 12 个个体患者样本,共 479 名患者。研究方法在研究之间存在很大差异。对来自这些异质性研究的结果进行荟萃分析得出,曲线下面积为 0.91,敏感性为 83%(95%CI 74-89%),特异性为 86%(95%CI 81-90%)。治疗之间的分类性能没有显著差异。虽然所有研究都进行了内部验证,但没有报告外部验证的研究。我们发现由于非独立特征选择等方法学缺陷导致存在较大的偏倚风险,尽管无偏倚研究的性能相当。

局限性

样本量相对较小,且没有研究使用外部验证,增加了准确性高估的风险。

结论

脑电图可以以较高的准确性预测抗抑郁治疗的反应。然而,需要进行更多具有严格验证的未来研究,以开发一种临床工具来指导 MDD 的干预措施。

PROSPERO 注册号:CRD42021268169。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验