Suppr超能文献

文档动态:记录的构成、负担和医生效率。

Documentation dynamics: Note composition, burden, and physician efficiency.

机构信息

National Center for Human Factors in Healthcare, MedStar Health Research Institute, Washington, District of Columbia, USA.

Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, Indiana, USA.

出版信息

Health Serv Res. 2023 Jun;58(3):674-685. doi: 10.1111/1475-6773.14097. Epub 2022 Nov 21.

Abstract

OBJECTIVE

To analyze how physician clinical note length and composition relate to electronic health record (EHR)-based measures of burden and efficiency that have been tied to burnout.

DATA SOURCES AND STUDY SETTING

Secondary EHR use metadata capturing physician-level measures from 203,728 US-based ambulatory physicians using the Epic Systems EHR between September 2020 and May 2021.

STUDY DESIGN

In this cross-sectional study, we analyzed physician clinical note length and note composition (e.g., content from manual or templated text). Our primary outcomes were three time-based measures of EHR burden (time writing EHR notes, time in the EHR after-hours, and EHR time on unscheduled days), and one measure of efficiency (percent of visits closed in the same day). We used multivariate regression to estimate the relationship between our outcomes and note length and composition.

DATA EXTRACTION

Physician-week measures of EHR usage were extracted from Epic's Signal platform used for measuring provider EHR efficiency. We calculated physician-level averages for our measures of interest and assigned physicians to overall note length deciles and note composition deciles from six sources, including templated text, manual text, and copy/paste text.

PRINCIPAL FINDINGS

Physicians in the top decile of note length demonstrated greater burden and lower efficiency than the median physician, spending 39% more time in the EHR after hours (p < 0.001) and closing 5.6 percentage points fewer visits on the same day (p < 0.001). Copy/paste demonstrated a similar dose/response relationship, with top-decile copy/paste users closing 6.8 percentage points fewer visits on the same day (p < 0.001) and spending more time in the EHR after hours and on days off (both p < 0.001). Templated text (e.g., Epic's SmartTools) demonstrated a non-linear relationship with burden and efficiency, with very low and very high levels of use associated with increased EHR burden and decreased efficiency.

CONCLUSIONS

"Efficiency tools" like copy/paste and templated text meant to reduce documentation burden and increase provider efficiency may have limited efficacy.

摘要

目的

分析医师临床记录的长度和组成与电子健康记录 (EHR) 相关的负担和效率指标之间的关系,这些指标与倦怠有关。

数据来源和研究环境

从 2020 年 9 月至 2021 年 5 月期间,使用 Epic 系统 EHR 的 203728 名美国门诊医生的二级 EHR 使用元数据,捕获医生级别的指标。

研究设计

在这项横断面研究中,我们分析了医师临床记录的长度和记录组成(例如,来自手动或模板文本的内容)。我们的主要结局是 EHR 负担的三个基于时间的指标(写 EHR 记录的时间、下班后在 EHR 中的时间和非工作日的 EHR 时间)和一个效率指标(同一天内关闭的就诊百分比)。我们使用多元回归来估计我们的结果与记录长度和组成之间的关系。

数据提取

从用于衡量提供者 EHR 效率的 Epic 的 Signal 平台中提取了医生周的 EHR 使用情况数据。我们计算了我们感兴趣的指标的医生级平均值,并根据六个来源(包括模板文本、手动文本和复制/粘贴文本)将医生分配到整体记录长度十分位数和记录组成十分位数。

主要发现

记录长度最高十分位数的医生比中位数医生的负担更大,效率更低,下班后在 EHR 中的时间多 39%(p<0.001),同一天内关闭的就诊少 5.6 个百分点(p<0.001)。复制/粘贴也表现出类似的剂量-反应关系,使用量最高十分位数的复制/粘贴用户在同一天内关闭的就诊少 6.8 个百分点(p<0.001),下班后和非工作日在 EHR 中的时间也更多(均 p<0.001)。模板文本(例如,Epic 的 SmartTools)与负担和效率呈非线性关系,使用量非常低和非常高都与 EHR 负担增加和效率降低有关。

结论

旨在减少文档负担和提高提供者效率的“效率工具”(如复制/粘贴和模板文本)可能效果有限。

相似文献

1
Documentation dynamics: Note composition, burden, and physician efficiency.文档动态:记录的构成、负担和医生效率。
Health Serv Res. 2023 Jun;58(3):674-685. doi: 10.1111/1475-6773.14097. Epub 2022 Nov 21.

引用本文的文献

3
Physician Perspectives on Ambient AI Scribes.医生对环境人工智能抄写员的看法。
JAMA Netw Open. 2025 Mar 3;8(3):e251904. doi: 10.1001/jamanetworkopen.2025.1904.
9
Measuring Documentation Burden in Healthcare.衡量医疗保健中的文件负担。
J Gen Intern Med. 2024 Nov;39(14):2837-2848. doi: 10.1007/s11606-024-08956-8. Epub 2024 Jul 29.

本文引用的文献

1
Physician Burnout and Timing of Electronic Health Record Use.医生职业倦怠与电子健康记录使用时机
ACI open. 2020 Jan;4(1):e1-e8. doi: 10.1055/s-0039-3401815. Epub 2020 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验