Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural Universitygrid.27871.3b, Jiangsu, Nanjing, People's Republic of China.
Appl Environ Microbiol. 2022 Nov 22;88(22):e0132222. doi: 10.1128/aem.01322-22. Epub 2022 Nov 7.
Fungi utilize a wide range of nitrogen to adapt their metabolism. The transcription factor GCN4 has a pivotal role in nitrogen metabolism. However, the mechanism by which GCN4 regulates nitrogen utilization in Ganoderma lucidum is not well understood. In this study, we found that GCN4 physically interacts with SKO1, a bZIP (basic leucine zipper) transcription factor. GCN4 cooperated with SKO1 to positively regulate nitrogen utilization, especially for the expression of . Electrophoretic mobility shift assays (EMSA) indicate that GCN4 directly binds to the promoter region. Further affinity analysis through biolayer interferometry (BLI) experiments and surface plasmon resonance (SPR) confirmed that GCN4 specifically binds to the promoter region of with a strong binding affinity to activate the transcription of . In contrast, SKO1 showed no specified binding effect on the promoter. However, SKO1 activates the expression of the by forming a complex with GCN4, which exhibits a 14.2-fold-higher affinity than GCN4 alone. Furthermore, the presence of SKO1 promotes the stability of GCN4 protein. Accordingly, our study found that the transcription factor SKO1 enhances the transcriptional activity of GCN4 on its target gene by interacting with GCN4. Our study illustrates a specific regulatory mechanism for the involvement of GCN4 and SKO1 in nitrogen utilization, which provides innovative insight into the regulation of nitrogen utilization in fungi. Nitrogen is an essential nutrient for cell growth and proliferation. Limitations of nitrogen availability in organisms elicit a series of rapid transcriptional reprogramming mechanisms, which involve the participation of many transcription factors. However, the specific mechanism of coordination between different transcription factors regulating nitrogen metabolism has not been explored. Our study revealed that GCN4 interacts with SKO1 and that they are both involved in regulating nitrogen utilization by affecting the transcription level of . We also found that GCN4 activates transcription by directly binding to the promoter recognition region of . SKO1 facilitates the transcription of by GCN4 by forming a more stable complex with GCN4. Our study deepens our understanding of the regulatory network of nitrogen metabolism and demonstrates a further level of regulation for transcription factors.
真菌利用广泛的氮源来适应其新陈代谢。转录因子 GCN4 在氮代谢中起着关键作用。然而,GCN4 调节灵芝氮利用的机制尚不清楚。在这项研究中,我们发现 GCN4 与 SKO1 相互作用,SKO1 是一种 bZIP(碱性亮氨酸拉链)转录因子。GCN4 与 SKO1 合作,正向调节氮利用,特别是 的表达。电泳迁移率变动分析(EMSA)表明,GCN4 直接结合到 启动子区域。通过生物层干涉(BLI)实验和表面等离子体共振(SPR)的亲和力分析进一步证实,GCN4 特异性结合到 的启动子区域,具有很强的结合亲和力来激活 的转录。相比之下,SKO1 对 启动子没有特定的结合作用。然而,SKO1 通过与 GCN4 形成复合物来激活 的表达,其与 GCN4 相比表现出 14.2 倍的更高亲和力。此外,SKO1 的存在促进了 GCN4 蛋白的稳定性。因此,我们的研究发现转录因子 SKO1 通过与 GCN4 相互作用增强了 GCN4 对其靶基因 的转录活性。我们的研究说明了 GCN4 和 SKO1 参与氮利用的特定调节机制,为真菌中氮利用的调节提供了新的见解。
氮是细胞生长和增殖所必需的营养物质。生物中氮供应的限制会引发一系列快速的转录重编程机制,其中涉及许多转录因子的参与。然而,不同转录因子调节氮代谢的协调的具体机制尚未被探索。我们的研究表明,GCN4 与 SKO1 相互作用,它们都通过影响 的转录水平参与调节氮利用。我们还发现,GCN4 通过直接结合到 的启动子识别区域来激活转录。SKO1 通过与 GCN4 形成更稳定的复合物来促进 GCN4 对 的转录。我们的研究加深了我们对氮代谢调节网络的理解,并展示了转录因子的进一步调节水平。