Suppr超能文献

GCN4 通过在氮限制条件下激活抗氧化基因表达来调节灵芝的次级代谢。

GCN4 Regulates Secondary Metabolism through Activation of Antioxidant Gene Expression under Nitrogen Limitation Conditions in Ganoderma lucidum.

机构信息

Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Jiangsu, Nanjing, People's Republic of China.

出版信息

Appl Environ Microbiol. 2021 Jun 25;87(14):e0015621. doi: 10.1128/AEM.00156-21.

Abstract

Nitrogen limitation has been widely reported to affect the growth and development of fungi, and the transcription factor GCN4 (general control nonderepressible 4) is involved in nitrogen restriction. Here, we found that nitrogen limitation highly induced the expression of GCN4 and promoted the synthesis of ganoderic acid (GA), an important secondary metabolite in Ganoderma lucidum. The activated GCN4 is involved in regulating GA biosynthesis. In addition, the accumulation of reactive oxygen species (ROS) also affects the synthesis of GA under nitrogen restrictions. The silencing of the gene led to further accumulation of ROS and increased the content of GA. Further studies found that GCN4 activated the transcription of antioxidant enzyme biosynthesis genes , , and (encoding glutathione reductase, glutathione -transferase, and catalase, respectively) through direct binding to the promoter of these genes to reduce the ROS accumulation. In conclusion, our study found that GCN4 directly interacts with the ROS signaling pathway to negatively regulate GA biosynthesis under nitrogen-limiting conditions. This provides an essential insight into the understanding of GCN4 transcriptional regulation of the ROS signaling pathway and enriches the knowledge of nitrogen regulation mechanisms in fungal secondary metabolism of Nitrogen has been widely reported to regulate secondary metabolism in fungi. Our study assessed the specific nitrogen regulatory mechanisms in Ganoderma lucidum. We found that GCN4 directly interacts with the ROS signaling pathway to negatively regulate GA biosynthesis under nitrogen-limiting conditions. Our research highlights a novel insight that GCN4, the nitrogen utilization regulator, participates in secondary metabolism through ROS signal regulation. In addition, this also provides a theoretical foundation for exploring the regulation of other physiological processes by GCN4 through ROS in fungi.

摘要

氮限制已被广泛报道会影响真菌的生长和发育,而转录因子 GCN4(一般控制不可抑制 4)参与氮限制。在这里,我们发现氮限制高度诱导 GCN4 的表达,并促进灵芝中重要的次生代谢产物灵芝酸(GA)的合成。激活的 GCN4 参与调节 GA 生物合成。此外,活性氧(ROS)的积累也会影响氮限制下 GA 的合成。基因的沉默导致 ROS 进一步积累并增加 GA 的含量。进一步的研究发现,GCN4 通过直接结合这些基因的启动子,激活抗氧化酶生物合成基因、和(分别编码谷胱甘肽还原酶、谷胱甘肽转移酶和过氧化氢酶)的转录,从而减少 ROS 的积累。总之,我们的研究发现,GCN4 在氮限制条件下通过直接与 ROS 信号通路相互作用,负调控 GA 生物合成。这为理解 GCN4 对 ROS 信号通路的转录调控提供了重要的见解,并丰富了氮在真菌次生代谢中调控机制的知识。已有研究报道氮调节真菌次生代谢,本研究评估了灵芝中特定的氮调控机制。我们发现,GCN4 在氮限制条件下通过直接与 ROS 信号通路相互作用,负调控 GA 生物合成。我们的研究强调了一个新的观点,即氮利用调节剂 GCN4 通过 ROS 信号调节参与次生代谢。此外,这也为探索 GCN4 通过 ROS 调节真菌中其他生理过程提供了理论基础。

相似文献

2
GCN4 Enhances the Transcriptional Regulation of AreA by Interacting with SKO1 To Mediate Nitrogen Utilization in Ganoderma lucidum.
Appl Environ Microbiol. 2022 Nov 22;88(22):e0132222. doi: 10.1128/aem.01322-22. Epub 2022 Nov 7.
3
activated by GCN4 regulates secondary metabolism under nitrogen limitation conditions in .
mBio. 2023 Oct 31;14(5):e0135623. doi: 10.1128/mbio.01356-23. Epub 2023 Sep 21.
6
Dual functions of AreA, a GATA transcription factor, on influencing ganoderic acid biosynthesis in Ganoderma lucidum.
Environ Microbiol. 2019 Nov;21(11):4166-4179. doi: 10.1111/1462-2920.14769. Epub 2019 Aug 19.
7
Cross Talk between GlAQP and NOX Modulates the Effects of ROS Balance on Ganoderic Acid Biosynthesis of Ganoderma lucidum under Water Stress.
Microbiol Spectr. 2022 Dec 21;10(6):e0129722. doi: 10.1128/spectrum.01297-22. Epub 2022 Nov 2.
8
Alternative oxidase impacts ganoderic acid biosynthesis by regulating intracellular ROS levels in Ganoderma lucidum.
Microbiology (Reading). 2017 Oct;163(10):1466-1476. doi: 10.1099/mic.0.000527. Epub 2017 Sep 13.
9
Effects of glutamate oxaloacetate transaminase on reactive oxygen species in Ganoderma lucidum.
Appl Microbiol Biotechnol. 2023 Mar;107(5-6):1845-1861. doi: 10.1007/s00253-023-12417-3. Epub 2023 Feb 9.
10
Roles of the Skn7 response regulator in stress resistance, cell wall integrity and GA biosynthesis in Ganoderma lucidum.
Fungal Genet Biol. 2018 May;114:12-23. doi: 10.1016/j.fgb.2018.03.002. Epub 2018 Mar 7.

引用本文的文献

2
The GCN4-Swi6B module mediates low nitrogen-induced cell wall remodeling in .
Appl Environ Microbiol. 2025 Apr 23;91(4):e0016425. doi: 10.1128/aem.00164-25. Epub 2025 Mar 27.
7
Metabolomic responses to the mechanical wounding of ' upper leaves.
PeerJ. 2023 Mar 20;11:e14539. doi: 10.7717/peerj.14539. eCollection 2023.
8
GCN4 Enhances the Transcriptional Regulation of AreA by Interacting with SKO1 To Mediate Nitrogen Utilization in Ganoderma lucidum.
Appl Environ Microbiol. 2022 Nov 22;88(22):e0132222. doi: 10.1128/aem.01322-22. Epub 2022 Nov 7.

本文引用的文献

1
In Ganoderma lucidum, Glsnf1 regulates cellulose degradation by inhibiting GlCreA during the utilization of cellulose.
Environ Microbiol. 2020 Jan;22(1):107-121. doi: 10.1111/1462-2920.14826. Epub 2019 Oct 28.
2
Dual functions of AreA, a GATA transcription factor, on influencing ganoderic acid biosynthesis in Ganoderma lucidum.
Environ Microbiol. 2019 Nov;21(11):4166-4179. doi: 10.1111/1462-2920.14769. Epub 2019 Aug 19.
3
4
Starvation and Pseudo-Starvation as Drivers of Cancer Metastasis through Translation Reprogramming.
Cell Metab. 2019 Feb 5;29(2):254-267. doi: 10.1016/j.cmet.2018.11.018. Epub 2018 Dec 20.
8
As Extracellular Glutamine Levels Decline, Asparagine Becomes an Essential Amino Acid.
Cell Metab. 2018 Feb 6;27(2):428-438.e5. doi: 10.1016/j.cmet.2017.12.006. Epub 2018 Jan 11.
10
Proteome response of , during lipid accumulation induced by nitrogen depletion.
Algal Res. 2016 Sep;18:213-224. doi: 10.1016/j.algal.2016.06.015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验