Suppr超能文献

sAMPpred-GAT:基于图注意力网络和预测肽结构的抗菌肽预测。

sAMPpred-GAT: prediction of antimicrobial peptide by graph attention network and predicted peptide structure.

机构信息

School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China.

Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Bioinformatics. 2023 Jan 1;39(1). doi: 10.1093/bioinformatics/btac715.

Abstract

MOTIVATION

Antimicrobial peptides (AMPs) are essential components of therapeutic peptides for innate immunity. Researchers have developed several computational methods to predict the potential AMPs from many candidate peptides. With the development of artificial intelligent techniques, the protein structures can be accurately predicted, which are useful for protein sequence and function analysis. Unfortunately, the predicted peptide structure information has not been applied to the field of AMP prediction so as to improve the predictive performance.

RESULTS

In this study, we proposed a computational predictor called sAMPpred-GAT for AMP identification. To the best of our knowledge, sAMPpred-GAT is the first approach based on the predicted peptide structures for AMP prediction. The sAMPpred-GAT predictor constructs the graphs based on the predicted peptide structures, sequence information and evolutionary information. The Graph Attention Network (GAT) is then performed on the graphs to learn the discriminative features. Finally, the full connection networks are utilized as the output module to predict whether the peptides are AMP or not. Experimental results show that sAMPpred-GAT outperforms the other state-of-the-art methods in terms of AUC, and achieves better or highly comparable performance in terms of the other metrics on the eight independent test datasets, demonstrating that the predicted peptide structure information is important for AMP prediction.

AVAILABILITY AND IMPLEMENTATION

A user-friendly webserver of sAMPpred-GAT can be accessed at http://bliulab.net/sAMPpred-GAT and the source code is available at https://github.com/HongWuL/sAMPpred-GAT/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

抗菌肽(AMPs)是先天免疫治疗肽的重要组成部分。研究人员已经开发了几种计算方法来从许多候选肽中预测潜在的 AMPs。随着人工智能技术的发展,可以准确地预测蛋白质结构,这对于蛋白质序列和功能分析很有用。不幸的是,预测的肽结构信息尚未应用于 AMP 预测领域,以提高预测性能。

结果

在这项研究中,我们提出了一种名为 sAMPpred-GAT 的计算预测器,用于 AMP 识别。据我们所知,sAMPpred-GAT 是第一个基于预测肽结构的 AMP 预测方法。sAMPpred-GAT 预测器基于预测的肽结构、序列信息和进化信息构建图。然后,在图上执行图注意力网络(GAT)以学习判别特征。最后,全连接网络用作输出模块,以预测肽是否为 AMP。实验结果表明,sAMPpred-GAT 在 AUC 方面优于其他最先进的方法,并且在八个独立测试数据集的其他指标上实现了更好或高度可比的性能,表明预测的肽结构信息对 AMP 预测很重要。

可用性和实现

sAMPpred-GAT 的用户友好型网络服务器可在 http://bliulab.net/sAMPpred-GAT 上访问,源代码可在 https://github.com/HongWuL/sAMPpred-GAT/ 上获得。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5baa/9805557/416ff60257af/btac715f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验