Department of Earth System Science, Stanford University, Stanford, California94305, United States.
School of Architecture, Civil and Environmental Engineering, EPFL, 1015Lausanne, Switzerland.
Environ Sci Technol. 2022 Dec 6;56(23):17462-17470. doi: 10.1021/acs.est.2c05797. Epub 2022 Nov 7.
Mountain floodplain soils often show spatiotemporal variations in redox conditions that arise due to changing hydrology and resulting biogeochemistry. Under oxygen-depleted conditions, solid phase terminal electron acceptors (TEAs) can be used in anaerobic respiration. However, it remains unclear to what degree the redox properties of solid phases limit respiration rates and hence organic matter degradation. Here, we assess such limitations in soils collected across a gradient in native redox states from the Slate River floodplain (Colorado, U.S.A.). We incubated soils under anoxic conditions and quantified CO production and microbial Fe(III) reduction, the main microbial metabolic pathway, as well as the reactivity of whole-soil solid phase TEAs toward mediated electrochemical reduction. Fe(III) reduction occurred together with CO production in native oxic soils, while neither Fe(II) nor CO production was observed in native anoxic soils. Initial CO production rates increased with increasing TEA redox reactivity toward mediated electrochemical reduction across all soil depths. Low TEA redox reactivity appears to be caused by elevated Fe(II) concentrations rather than crystallinity of Fe(III) phases. Our findings illustrate that the buildup of Fe(II) in systems with long residence times limits the thermodynamic viability of dissimilatory Fe(III) reduction and thereby limits the mineralization of organic carbon.
山区洪泛平原土壤的氧化还原条件常常具有时空变化,这是由于水文变化和由此产生的生物地球化学过程所致。在缺氧条件下,固相末端电子受体(TEAs)可用于厌氧呼吸。然而,固相的氧化还原性质在多大程度上限制了呼吸速率,从而限制了有机物质的降解,这一点尚不清楚。在这里,我们评估了来自斯莱特河洪泛平原(美国科罗拉多州)的原生氧化还原状态梯度上采集的土壤中的这种限制。我们在缺氧条件下培养土壤,并定量测定了 CO 的产生和微生物 Fe(III)还原,这是微生物的主要代谢途径,以及整个土壤固相 TEA 对介导电化学还原的反应性。在原生好氧土壤中,Fe(III)还原伴随着 CO 的产生,而在原生缺氧土壤中则没有观察到 Fe(II)或 CO 的产生。在所有土壤深度中,随着介导电化学还原的 TEA 氧化还原反应性的增加,初始 CO 产生速率也随之增加。低 TEA 氧化还原反应性似乎是由 Fe(II)浓度升高而不是 Fe(III)相的结晶度引起的。我们的研究结果表明,在停留时间较长的系统中 Fe(II)的积累限制了异化 Fe(III)还原的热力学可行性,从而限制了有机碳的矿化。