Suppr超能文献

在氮气酶反应中不使任何硫化物配体解离的热力学有利状态。

Thermodynamically Favourable States in the Reaction of Nitrogenase without Dissociation of any Sulfide Ligand.

机构信息

Department of Theoretical Chemistry, Lund University Chemical Centre, P. O. Box 124, 221 00, Lund, Sweden.

出版信息

Chemistry. 2022 Mar 7;28(14):e202103933. doi: 10.1002/chem.202103933. Epub 2022 Feb 2.

Abstract

We have used combined quantum mechanical and molecular mechanical (QM/MM) calculations to study the reaction mechanism of nitrogenase, assuming that none of the sulfide ligands dissociates. To avoid the problem that there is no consensus regarding the structure and protonation of the E state, we start from a state where N is bound to the cluster and is protonated to N H , after dissociation of H . We show that the reaction follows an alternating mechanism with HNNH (possibly protonated to HNNH ) and H NNH as intermediates and the two NH products dissociate at the E and E levels. For all intermediates, coordination to Fe6 is preferred, but for the E and E intermediates, binding to Fe2 is competitive. For the E , E and E intermediates we find that the substrate may abstract a proton from the hydroxy group of the homocitrate ligand of the FeMo cluster, thereby forming HNNH , H NNH and NH intermediates. This may explain why homocitrate is a mandatory component of nitrogenase. All steps in the suggested reaction mechanism are thermodynamically favourable compared to protonation of the nearby His-195 group and in all cases, protonation of the NE2 atom of the latter group is preferred.

摘要

我们使用了量子力学和分子力学(QM/MM)相结合的计算方法来研究固氮酶的反应机制,假设所有的硫化物配体都不发生解离。为了避免 E 态结构和质子化问题上没有共识,我们从 N 与团簇结合并被质子化到 N H 的状态开始,在 H 的解离之后。我们表明,该反应遵循交替机制,其中 HNNH(可能被质子化为 HNNH )和 H NNH 作为中间体,两个 NH 产物在 E 和 E 水平解离。对于所有中间体,Fe6 的配位是首选,但对于 E 和 E 中间体,与 Fe2 的结合具有竞争力。对于 E 、 E 和 E 中间体,我们发现底物可能从 FeMo 团簇的同型柠檬酸配体的羟基中夺取一个质子,从而形成 HNNH 、 H NNH 和 NH 中间体。这可能解释了为什么同型柠檬酸是固氮酶的必需成分。与附近 His-195 基团的质子化相比,建议的反应机制中的所有步骤在热力学上都是有利的,在所有情况下,后者基团的 NE2 原子的质子化都是首选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e8c/9305431/0f60bbd54b8d/CHEM-28-0-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验