Department of Civil and Environmental Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
Sci Data. 2022 Nov 7;9(1):677. doi: 10.1038/s41597-022-01768-7.
Water stored in mountain snowpacks (i.e., snow water equivalent, SWE) represents an important but poorly characterized component of the terrestrial water cycle. The Western United States snow reanalysis (WUS-SR) dataset is novel in its combination of spatial resolution (~500 m), spatial extent (31°-49° N; 102°-125° W), and temporal continuity (daily over 1985-2021). WUS-SR is generated using a Bayesian framework with model-based snow estimates updated through the assimilation of cloud-free Landsat fractional snow-covered area observations. Over the WUS, the peak SWE verification with independent in situ measurements show correlation coefficient, mean difference (MD), and root mean squared difference (RMSD) of 0.77, -0.15 m, and 0.28 m, respectively. The effects of forest cover and Landsat image availability on peak SWE are assessed. WUS-SR peak SWE is well correlated (ranging from 0.75 to 0.91) against independent lidar-derived SWE taken near April 1, with MD <0.15 m and RMSD <0.38 m. The dataset is useful for characterizing WUS mountain snow storage, and ultimately for improving snow-derived water resources management.
储存在山地积雪中的水(即雪水当量,SWE)是陆地水循环中一个重要但特征描述较差的组成部分。西部美国雪再分析(WUS-SR)数据集在空间分辨率(约 500m)、空间范围(31°-49°N;102°-125°W)和时间连续性(1985-2021 年每天)方面具有新颖性。WUS-SR 是使用基于贝叶斯框架的方法生成的,通过同化无云 Landsat 积雪覆盖面积的观测值,对基于模型的雪量估计进行更新。在 WUS 地区,与独立的实地测量结果进行峰值 SWE 验证的相关系数、均值差(MD)和均方根差(RMSD)分别为 0.77、-0.15m 和 0.28m。评估了森林覆盖和 Landsat 图像可用性对峰值 SWE 的影响。WUS-SR 的峰值 SWE 与独立的激光雷达衍生的 SWE 高度相关(范围从 0.75 到 0.91),MD<0.15m,RMSD<0.38m。该数据集可用于描述 WUS 山区积雪储存,最终用于改善基于积雪的水资源管理。