Ramirez-Corona Bryan A, Love Anna C, Chandrasekaran Srikiran, Prescher Jennifer A, Wunderlich Zeba
Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA92697, USA.
Department of Chemistry, University of California, Irvine, Irvine, CA92697, USA.
iScience. 2022 Oct 17;25(11):105378. doi: 10.1016/j.isci.2022.105378. eCollection 2022 Nov 18.
The innate immune system is critical for infection survival. is a key model for understanding the evolution and dynamics of innate immunity. Current toolsets for fly infection studies are limited in throughput and, because of their destructive nature, cannot generate longitudinal measurements in individual animals. We report a bioluminescent imaging strategy enabling non-invasive characterization of pathogen load. By using expressing the operon, we demonstrate that photon flux from autobioluminescent bacteria can be used to monitor pathogen loads in individual, living flies. Because animal sacrifice is not necessary to estimate pathogen load, stochastic responses to infection can be characterized in individuals over time. The high temporal resolution of bioluminescence imaging enables visualization of the dynamics of microbial clearance on the hours time-scale. This non-invasive imaging strategy provides a simple and scalable platform to observe changes in pathogen load over time.
先天免疫系统对于感染后的存活至关重要。果蝇是理解先天免疫进化和动态变化的关键模型。当前用于果蝇感染研究的工具集通量有限,并且由于其具有破坏性,无法在个体动物中进行纵向测量。我们报告了一种生物发光成像策略,可对病原体载量进行非侵入性表征。通过使用表达lux操纵子的细菌,我们证明来自自体发光细菌的光子通量可用于监测个体活果蝇中的病原体载量。由于估计病原体载量无需牺牲动物,因此可以随时间表征个体对感染的随机反应。生物发光成像的高时间分辨率能够在小时时间尺度上可视化微生物清除的动态过程。这种非侵入性成像策略提供了一个简单且可扩展的平台,用于观察病原体载量随时间的变化。