Suppr超能文献

预测-GTN1:我们能否改进滋养细胞肿瘤的 FIGO 评分系统?

PREDICT-GTN 1: Can we improve the FIGO scoring system in gestational trophoblastic neoplasia?

机构信息

Department of Oncology and Metabolism, The Medical School, The University of Sheffield, Sheffield, UK.

Sheffield Centre for Trophoblastic Disease, Weston Park Cancer Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.

出版信息

Int J Cancer. 2023 Mar 1;152(5):986-997. doi: 10.1002/ijc.34352. Epub 2022 Dec 3.

Abstract

Gestational trophoblastic neoplasia (GTN) patients are treated according to the eight-variable International Federation of Gynaecology and Obstetrics (FIGO) scoring system, that aims to predict first-line single-agent chemotherapy resistance. FIGO is imperfect with one-third of low-risk patients developing disease resistance to first-line single-agent chemotherapy. We aimed to generate simplified models that improve upon FIGO. Logistic regression (LR) and multilayer perceptron (MLP) modelling (n = 4191) generated six models (M1-6). M1, all eight FIGO variables (scored data); M2, all eight FIGO variables (scored and raw data); M3, nonimaging variables (scored data); M4, nonimaging variables (scored and raw data); M5, imaging variables (scored data); and M6, pretreatment hCG (raw data) + imaging variables (scored data). Performance was compared to FIGO using true and false positive rates, positive and negative predictive values, diagnostic odds ratio, receiver operating characteristic (ROC) curves, Bland-Altman calibration plots, decision curve analysis and contingency tables. M1-6 were calibrated and outperformed FIGO on true positive rate and positive predictive value. Using LR and MLP, M1, M2 and M4 generated small improvements to the ROC curve and decision curve analysis. M3, M5 and M6 matched FIGO or performed less well. Compared to FIGO, most (excluding LR M4 and MLP M5) had significant discordance in patient classification (McNemar's test P < .05); 55-112 undertreated, 46-206 overtreated. Statistical modelling yielded only small gains over FIGO performance, arising through recategorisation of treatment-resistant patients, with a significant proportion of under/overtreatment as the available data have been used a priori to allocate primary chemotherapy. Streamlining FIGO should now be the focus.

摘要

妊娠滋养细胞肿瘤(GTN)患者根据国际妇产科联合会(FIGO)的八项变量评分系统进行治疗,该系统旨在预测一线单药化疗耐药性。FIGO 并不完美,三分之一的低危患者对一线单药化疗产生耐药性。我们旨在生成简化模型,以改进 FIGO。逻辑回归(LR)和多层感知器(MLP)建模(n=4191)生成了六个模型(M1-6)。M1,所有八项 FIGO 变量(评分数据);M2,所有八项 FIGO 变量(评分和原始数据);M3,非影像学变量(评分数据);M4,非影像学变量(评分和原始数据);M5,影像学变量(评分数据);M6,治疗前 hCG(原始数据)+影像学变量(评分数据)。使用真阳性率和假阳性率、阳性和阴性预测值、诊断优势比、接受者操作特征(ROC)曲线、Bland-Altman 校准图、决策曲线分析和列联表比较了与 FIGO 的性能。M1-6 经校准后,真阳性率和阳性预测值优于 FIGO。使用 LR 和 MLP,M1、M2 和 M4 对 ROC 曲线和决策曲线分析略有改进。M3、M5 和 M6 与 FIGO 匹配或表现较差。与 FIGO 相比,大多数(LR M4 和 MLP M5 除外)患者分类存在显著差异(McNemar 检验 P<0.05);55-112 例治疗不足,46-206 例治疗过度。统计模型在 FIGO 性能上仅略有提高,这是通过重新分类耐药患者引起的,由于已事先使用可用数据来分配一线化疗,因此存在相当比例的过度/不足治疗。现在应关注简化 FIGO。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/edd1/10108153/5eb7ee53653e/IJC-152-986-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验