Boyd Emily A, Shin Chungkeun, Charboneau David J, Peters Jonas C, Reisman Sarah E
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
Science. 2024 Aug 23;385(6711):847-853. doi: 10.1126/science.adp5777. Epub 2024 Aug 22.
Samarium diiodide (SmI) is a privileged, single-electron reductant deployed in diverse synthetic settings. However, generalizable methods for catalytic turnover remain elusive because of the well-known challenge associated with cleaving strong Sm-O bonds. Prior efforts have focused on the use of highly reactive oxophiles to enable catalyst turnover. However, such approaches give rise to complex catalyst speciation and intrinsically limit the synthetic scope. Herein, we leveraged a mild and selective protonolysis strategy to achieve samarium-catalyzed, intermolecular reductive cross-coupling of ketones and acrylates with broad scope. The modularity of our approach allows rational control of selectivity based on solvent, p (where is the acid dissociation constant), and the samarium coordination sphere and provides a basis for future developments in catalytic and electrocatalytic lanthanide chemistry.
二碘化钐(SmI)是一种在多种合成环境中使用的优良单电子还原剂。然而,由于众所周知的与断裂强Sm-O键相关的挑战,实现催化周转的通用方法仍然难以捉摸。先前的努力集中在使用高反应性的亲氧试剂来实现催化剂周转。然而,这些方法会导致复杂的催化剂物种形成,并从本质上限制了合成范围。在此,我们利用一种温和且选择性的质子olysis策略,实现了钐催化的酮和丙烯酸酯的分子间还原交叉偶联,具有广泛的范围。我们方法的模块化允许基于溶剂、p(其中 是酸解离常数)和钐配位球对选择性进行合理控制,并为催化和电催化镧系元素化学的未来发展提供了基础。 (注:原文中“p (where is the acid dissociation constant)”这里表述不太准确完整,翻译可能会稍显生硬,可进一步明确准确内容后优化译文)