Suppr超能文献

SCRaMbLE:通过增强半合成酵母中潮霉素B抗性对其稳健性和挑战的研究

SCRaMbLE: A Study of Its Robustness and Challenges through Enhancement of Hygromycin B Resistance in a Semi-Synthetic Yeast.

作者信息

Ong Jun Yang, Swidah Reem, Monti Marco, Schindler Daniel, Dai Junbiao, Cai Yizhi

机构信息

Manchester Institute of Biotechnology (MIB), The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.

Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

出版信息

Bioengineering (Basel). 2021 Mar 23;8(3):42. doi: 10.3390/bioengineering8030042.

Abstract

Recent advances in synthetic genomics launched the ambitious goal of generating the first synthetic designer eukaryote, based on the model organism (Sc2.0). Excitingly, the Sc2.0 project is now nearing its completion and SCRaMbLE, an accelerated evolution tool implemented by the integration of symmetrical loxP sites (loxPSym) downstream of almost every non-essential gene, is arguably the most applicable synthetic genome-wide alteration to date. The SCRaMbLE system offers the capability to perform rapid genome diversification, providing huge potential for targeted strain improvement. Here we describe how SCRaMbLE can evolve a semi-synthetic yeast strain housing the synthetic chromosome II (synII) to generate hygromycin B resistant genotypes. Exploiting long-read nanopore sequencing, we show that all structural variations are due to recombination between loxP sites, with no off-target effects. We also highlight a phenomenon imposed on SCRaMbLE termed "essential raft", where a fragment flanked by a pair of loxPSym sites can move within the genome but cannot be removed due to essentiality restrictions. Despite this, SCRaMbLE was able to explore the genomic space and produce alternative structural compositions that resulted in an increased hygromycin B resistance in the synII strain. We show that among the rearrangements generated via SCRaMbLE, deletions of YBR219C and YBR220C contribute to hygromycin B resistance phenotypes. However, the hygromycin B resistance provided by SCRaMbLEd genomes showed significant improvement when compared to corresponding single deletions, demonstrating the importance of the complex structural variations generated by SCRaMbLE to improve hygromycin B resistance. We anticipate that SCRaMbLE and its successors will be an invaluable tool to predict and evaluate the emergence of antibiotic resistance in yeast.

摘要

合成基因组学的最新进展开启了一个宏伟目标,即基于模式生物(Sc2.0)创造首个合成设计真核生物。令人兴奋的是,Sc2.0项目现已接近完成,而SCRaMbLE作为一种加速进化工具,通过在几乎每个非必需基因的下游整合对称的loxP位点(loxPSym)来实现,可谓是迄今为止最适用的全基因组合成改造方法。SCRaMbLE系统具备快速实现基因组多样化的能力,为定向菌株改良提供了巨大潜力。在此,我们描述了SCRaMbLE如何使携带合成染色体II(synII)的半合成酵母菌株进化,以产生对潮霉素B具有抗性的基因型。利用长读长纳米孔测序技术,我们发现所有结构变异均源于loxP位点之间的重组,且无脱靶效应。我们还强调了一种施加于SCRaMbLE的现象,称为“必需筏”,即由一对loxPSym位点侧翼的片段可在基因组内移动,但由于必需性限制而无法被去除。尽管如此,SCRaMbLE仍能够探索基因组空间并产生替代的结构组成,从而导致synII菌株对潮霉素B的抗性增加。我们表明,在通过SCRaMbLE产生的重排中,YBR219C和YBR220C的缺失有助于潮霉素B抗性表型的形成。然而,与相应的单缺失相比,SCRaMbLEd基因组提供的潮霉素B抗性有显著提高,这表明SCRaMbLE产生的复杂结构变异对于提高潮霉素B抗性的重要性。我们预计,SCRaMbLE及其后续技术将成为预测和评估酵母中抗生素抗性出现的宝贵工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dffa/8004914/722ff86eba3c/bioengineering-08-00042-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验