Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.
Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON, Canada.
Sci Rep. 2022 Nov 8;12(1):18508. doi: 10.1038/s41598-022-22203-2.
The human inner ear contains minute three-dimensional neurosensory structures that are deeply embedded within the skull base, rendering them relatively inaccessible to regenerative therapies for hearing loss. Here we provide a detailed characterisation of the functional architecture of the space that hosts the cell bodies of the auditory nerve to make them safely accessible for the first time for therapeutic intervention. We used synchrotron phase-contrast imaging which offers the required microscopic soft-tissue contrast definition while simultaneously displaying precise bony anatomic detail. Using volume-rendering software we constructed highly accurate 3-dimensional representations of the inner ear. The cell bodies are arranged in a bony helical canal that spirals from the base of the cochlea to its apex; the canal volume is 1.6 μL but with a diffusion potential of 15 μL. Modelling data from 10 temporal bones enabled definition of a safe trajectory for therapeutic access while preserving the cochlea's internal architecture. We validated the approach through surgical simulation, anatomical dissection and micro-radiographic analysis. These findings will facilitate future clinical trials of novel therapeutic interventions to restore hearing.
人类内耳包含微小的三维神经感觉结构,这些结构深深地嵌入颅底,使得它们相对难以接受听力损失的再生治疗。在这里,我们首次详细描述了听觉神经细胞体所在空间的功能结构,使其能够安全地进行治疗干预。我们使用同步辐射相衬成像技术,该技术提供了所需的微观软组织对比度定义,同时还显示了精确的骨骼解剖细节。我们使用容积渲染软件构建了内耳的高度精确的三维表示。细胞体排列在一个从耳蜗底部到其顶点的骨螺旋形管中;该管的体积为 1.6 μL,但扩散潜力为 15 μL。来自 10 个颞骨的建模数据能够定义一条安全的治疗通道,同时保留耳蜗的内部结构。我们通过手术模拟、解剖和微射线照相分析验证了该方法。这些发现将有助于未来对恢复听力的新型治疗干预措施的临床试验。