Jin Zeyu, Zhou Xuyan, Hu Yixuan, Tang Xiaowei, Hu Kailong, Reddy Kolan Madhav, Lin Xi, Qiu Hua-Jun
School of Materials Science and Engineering, Harbin Institute of Technology Shenzhen 518055 China
Blockchain Development and Research Institute, Harbin Institute of Technology Shenzhen 518055 P. R. China.
Chem Sci. 2022 Aug 24;13(41):12056-12064. doi: 10.1039/d2sc04461g. eCollection 2022 Oct 26.
Nanostructured high-entropy materials such as alloys, oxides, , are attracting extensive attention because of their widely tunable surface electronic structure/catalytic activity through mixing different elements in one system. To further tune the catalytic performance and multifunctionality, the designed fabrication of multicomponent high-entropy nanocomposites such as high-entropy alloy@high-entropy oxides (HEA@HEO) should be very promising. In this work, we design a two-step alloying-dealloying strategy to synthesize ultra-small HEA nanoclusters (∼2 nm) loaded on nanoporous HEO nanowires, and the compositions of both the HEA and HEO can be adjusted separately. To demonstrate this concept, a seven-component HEA (PtPdAuAgCuIrRu) clusters@seven-component HEO (AlNiCoFeCrMoTi)O was prepared, which is highly active for both oxygen evolution and reduction reactions. Our comprehensive experimental results and first-principles density functional theory (DFT) calculations clearly show that better oxygen evolution reaction (OER) performance is obtained by optimizing the composition of the HEO support, and the seven-component HEA nanocluster is much more active for the ORR when compared with pure Pt due to the modified surface electronic structure. Specifically, the high-entropy composite exhibits an OER activity comparable to the best reported value, and the ORR activity exceeded the performance of commercial Pt/C in alkaline solutions with a record-low bifunctional Δ of 0.61 V in 0.1 M KOH solution. This work shows an important route to prepare complex HEA@HEO nanocomposites with tuned catalytic performance for multifunctional catalysis and energy conversion.
纳米结构的高熵材料,如合金、氧化物等,因其通过在一个体系中混合不同元素而具有广泛可调的表面电子结构/催化活性,正吸引着广泛关注。为了进一步调节催化性能和多功能性,设计制备多组分高熵纳米复合材料,如高熵合金@高熵氧化物(HEA@HEO),应该非常有前景。在这项工作中,我们设计了一种两步合金化-脱合金化策略,以合成负载在纳米多孔HEO纳米线上的超小HEA纳米团簇(约2纳米),并且HEA和HEO的组成都可以分别调节。为了证明这一概念,制备了一种七组分的HEA(PtPdAuAgCuIrRu)团簇@七组分的HEO(AlNiCoFeCrMoTi)O,它对析氧反应和氧还原反应都具有高活性。我们全面的实验结果和第一性原理密度泛函理论(DFT)计算清楚地表明,通过优化HEO载体的组成可以获得更好的析氧反应(OER)性能,并且由于表面电子结构的改变,七组分的HEA纳米团簇在ORR方面比纯Pt更具活性。具体而言,该高熵复合材料表现出与报道的最佳值相当的OER活性,并且在碱性溶液中的ORR活性超过了商业Pt/C的性能,在0.1 M KOH溶液中的双功能Δ低至0.61 V,创历史新低。这项工作展示了一条制备具有可调催化性能的复杂HEA@HEO纳米复合材料用于多功能催化和能量转换的重要途径。