Suppr超能文献

结构保持元学习联合网络,用于提高低剂量 CT 质量。

Structure-preserved meta-learning uniting network for improving low-dose CT quality.

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, People's Republic of China.

出版信息

Phys Med Biol. 2022 Dec 12;67(24). doi: 10.1088/1361-6560/aca194.

Abstract

Deep neural network (DNN) based methods have shown promising performances for low-dose computed tomography (LDCT) imaging. However, most of the DNN-based methods are trained on simulated labeled datasets, and the low-dose simulation algorithms are usually designed based on simple statistical models which deviate from the real clinical scenarios, which could lead to issues of overfitting, instability and poor robustness. To address these issues, in this work, we present a structure-preserved meta-learning uniting network (shorten as 'SMU-Net') to suppress noise-induced artifacts and preserve structure details in the unlabeled LDCT imaging task in real scenarios.Specifically, the presented SMU-Net contains two networks, i.e., teacher network and student network. The teacher network is trained on simulated labeled dataset and then helps the student network train with the unlabeled LDCT images via the meta-learning strategy. The student network is trained on real LDCT dataset with the pseudo-labels generated by the teacher network. Moreover, the student network adopts the Co-teaching strategy to improve the robustness of the presented SMU-Net.We validate the proposed SMU-Net method on three public datasets and one real low-dose dataset. The visual image results indicate that the proposed SMU-Net has superior performance on reducing noise-induced artifacts and preserving structure details. And the quantitative results exhibit that the presented SMU-Net method generally obtains the highest signal-to-noise ratio (PSNR), the highest structural similarity index measurement (SSIM), and the lowest root-mean-square error (RMSE) values or the lowest natural image quality evaluator (NIQE) scores.We propose a meta learning strategy to obtain high-quality CT images in the LDCT imaging task, which is designed to take advantage of unlabeled CT images to promote the reconstruction performance in the LDCT environments.

摘要

基于深度神经网络(DNN)的方法在低剂量计算机断层扫描(LDCT)成像方面表现出了很有前景的性能。然而,大多数基于 DNN 的方法都是在模拟标记数据集上进行训练的,而低剂量模拟算法通常是基于简单的统计模型设计的,这些模型偏离了真实的临床场景,这可能导致过度拟合、不稳定性和较差的鲁棒性等问题。为了解决这些问题,在这项工作中,我们提出了一种结构保持元学习联合网络(简称“SMU-Net”),以在真实场景中的未标记 LDCT 成像任务中抑制噪声引起的伪影并保留结构细节。具体来说,所提出的 SMU-Net 包含两个网络,即教师网络和学生网络。教师网络在模拟标记数据集上进行训练,然后通过元学习策略帮助学生网络对未标记的 LDCT 图像进行训练。学生网络在真实的 LDCT 数据集上进行训练,并使用教师网络生成的伪标签进行训练。此外,学生网络采用协同教学策略来提高所提出的 SMU-Net 的鲁棒性。我们在三个公共数据集和一个真实的低剂量数据集上验证了所提出的 SMU-Net 方法。视觉图像结果表明,所提出的 SMU-Net 在减少噪声引起的伪影和保留结构细节方面具有优越的性能。定量结果表明,所提出的 SMU-Net 方法通常获得最高的信噪比(PSNR)、最高的结构相似性指数测量(SSIM)、最低的均方根误差(RMSE)值或最低的自然图像质量评估器(NIQE)得分。我们提出了一种元学习策略,以在 LDCT 成像任务中获得高质量的 CT 图像,该策略旨在利用未标记的 CT 图像来促进 LDCT 环境中的重建性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验