Suppr超能文献

一种通过进行贝叶斯网络建模并采用稳健的协变量绘图方法从调查数据中获取知识的方法。

An approach for knowledge acquisition from a survey data by conducting Bayesian network modeling, adopting the robust coplot method.

作者信息

Ersel Derya, Atılgan Yasemin Kayhan

机构信息

Department of Statistics, Hacettepe University, Ankara, Turkey.

出版信息

J Appl Stat. 2021 Aug 31;49(16):4069-4096. doi: 10.1080/02664763.2021.1971631. eCollection 2022.

Abstract

This study proposes a methodological approach for extracting useful knowledge from survey data by performing Bayesian network (BN) modeling and adopting the robust coplot analysis results as prior knowledge about association patterns hidden in the data. By addressing the issue of BN construction when the expert knowledge is limited/not available, this proposed approach facilitates the modeling of large data sets describing numerously observed and latent variables. By answering the question of which node(s)/link(s) should be retained or discarded from a BN, we aim to determine a compact model of variables while considering the desired properties of data. The proposed method steps are explained on real data extracted from Turkey Demographic and Health Survey. First, a BN structure is created, which is based solely on the judgment of the analyst. Then the coplot results are employed to update the BN structure and the model parameters are updated using the updated structure and data. Loss scores of the BNs are used to ensure the success of the updated BN that inherits knowledge from coplot.

摘要

本研究提出了一种方法,通过执行贝叶斯网络(BN)建模并采用稳健的协变量图分析结果作为隐藏在数据中的关联模式的先验知识,从调查数据中提取有用的知识。通过解决专家知识有限/不可用时的BN构建问题,该方法有助于对描述大量观测变量和潜在变量的大数据集进行建模。通过回答应从BN中保留或丢弃哪些节点/链接的问题,我们旨在在考虑数据所需属性的同时确定一个紧凑的变量模型。所提出的方法步骤在从土耳其人口与健康调查中提取的真实数据上进行解释。首先,创建一个仅基于分析师判断的BN结构。然后,利用协变量图结果更新BN结构,并使用更新后的结构和数据更新模型参数。BN的损失分数用于确保从协变量图继承知识的更新后的BN的成功。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验