Sinclair David G, Hooker Giles
Department of Statistical Science, Cornell University, Ithaca, NY, USA.
J Appl Stat. 2021 Aug 31;49(16):4049-4068. doi: 10.1080/02664763.2021.1970121. eCollection 2022.
We propose the misclassified Ising Model: a framework for analyzing dependent binary data where the binary state is susceptible to error. We extend previous theoretical results of a model selection method based on applying the LASSO to logistic regression at each node and show that the method will still correctly identify edges in the underlying graphical model under suitable misclassification settings. With knowledge of the misclassification process, an expectation maximization algorithm is developed that accounts for misclassification during model selection. We illustrate the increase of performance of the proposed expectation maximization algorithm with simulated data, and using data from a functional magnetic resonance imaging analysis.
一个用于分析相关二元数据的框架,其中二元状态容易出错。我们扩展了之前基于在每个节点将套索回归应用于逻辑回归的模型选择方法的理论结果,并表明在适当的误分类设置下,该方法仍能正确识别基础图形模型中的边。在了解误分类过程的情况下,开发了一种期望最大化算法,该算法在模型选择过程中考虑了误分类。我们用模拟数据以及功能磁共振成像分析的数据说明了所提出的期望最大化算法性能的提升。