Falini Antonella
Computer Science Department, University of Bari Aldo Moro, 70125 Bari, Italy.
J Imaging. 2022 Nov 5;8(11):301. doi: 10.3390/jimaging8110301.
Brain tumors are abnormal cell growth in the brain tissues that can be cancerous or not. In any case, they could be a very aggressive disease that should be detected as early as possible. Usually, magnetic resonance imaging (MRI) is the main tool commonly adopted by neurologists and radiologists to identify and classify any possible anomalies present in the brain anatomy. In the present work, an automatic unsupervised method called Z2-γ, based on the use of adaptive finite-elements and suitable pre-processing and post-processing techniques, is introduced. The adaptive process, driven by a Zienkiewicz-Zhu type error estimator (Z2), is carried out on isotropic triangulations, while the given input images are pre-processed via nonlinear transformations (γ corrections) to enhance the ability of the error estimator to detect any relevant anomaly. The proposed methodology is able to automatically classify whether a given MR image represents a healthy or a diseased brain and, in this latter case, is able to locate the tumor area, which can be easily delineated by removing any redundancy with post-processing techniques based on morphological transformations. The method is tested on a freely available dataset achieving 0.846 of accuracy and F1 score equal to 0.88.
脑肿瘤是脑组织中异常的细胞生长,可能是恶性的,也可能不是。无论如何,它们可能是一种极具侵袭性的疾病,应尽早发现。通常,磁共振成像(MRI)是神经科医生和放射科医生常用的主要工具,用于识别和分类脑解剖结构中存在的任何可能异常。在本研究中,介绍了一种基于自适应有限元以及适当的预处理和后处理技术的自动无监督方法,称为Z2-γ。由齐恩凯维奇-朱型误差估计器(Z2)驱动的自适应过程在各向同性三角剖分上进行,而给定的输入图像通过非线性变换(γ校正)进行预处理,以增强误差估计器检测任何相关异常的能力。所提出的方法能够自动分类给定的MR图像代表的是健康大脑还是患病大脑,在后一种情况下,能够定位肿瘤区域,通过基于形态变换的后处理技术去除任何冗余信息,该区域可以很容易地勾勒出来。该方法在一个免费可用的数据集上进行了测试,准确率达到0.846,F1分数等于0.88。