Suppr超能文献

MADGAN:基于多模态相邻脑 MRI 切片重建的无监督医学异常检测生成对抗网络。

MADGAN: unsupervised medical anomaly detection GAN using multiple adjacent brain MRI slice reconstruction.

机构信息

LPIXEL Inc., Tokyo, Japan.

Department of Radiology, University of Cambridge, Cambridge, UK.

出版信息

BMC Bioinformatics. 2021 Apr 26;22(Suppl 2):31. doi: 10.1186/s12859-020-03936-1.

Abstract

BACKGROUND

Unsupervised learning can discover various unseen abnormalities, relying on large-scale unannotated medical images of healthy subjects. Towards this, unsupervised methods reconstruct a 2D/3D single medical image to detect outliers either in the learned feature space or from high reconstruction loss. However, without considering continuity between multiple adjacent slices, they cannot directly discriminate diseases composed of the accumulation of subtle anatomical anomalies, such as Alzheimer's disease (AD). Moreover, no study has shown how unsupervised anomaly detection is associated with either disease stages, various (i.e., more than two types of) diseases, or multi-sequence magnetic resonance imaging (MRI) scans.

RESULTS

We propose unsupervised medical anomaly detection generative adversarial network (MADGAN), a novel two-step method using GAN-based multiple adjacent brain MRI slice reconstruction to detect brain anomalies at different stages on multi-sequence structural MRI: (Reconstruction) Wasserstein loss with Gradient Penalty + 100 [Formula: see text] loss-trained on 3 healthy brain axial MRI slices to reconstruct the next 3 ones-reconstructs unseen healthy/abnormal scans; (Diagnosis) Average [Formula: see text] loss per scan discriminates them, comparing the ground truth/reconstructed slices. For training, we use two different datasets composed of 1133 healthy T1-weighted (T1) and 135 healthy contrast-enhanced T1 (T1c) brain MRI scans for detecting AD and brain metastases/various diseases, respectively. Our self-attention MADGAN can detect AD on T1 scans at a very early stage, mild cognitive impairment (MCI), with area under the curve (AUC) 0.727, and AD at a late stage with AUC 0.894, while detecting brain metastases on T1c scans with AUC 0.921.

CONCLUSIONS

Similar to physicians' way of performing a diagnosis, using massive healthy training data, our first multiple MRI slice reconstruction approach, MADGAN, can reliably predict the next 3 slices from the previous 3 ones only for unseen healthy images. As the first unsupervised various disease diagnosis, MADGAN can reliably detect the accumulation of subtle anatomical anomalies and hyper-intense enhancing lesions, such as (especially late-stage) AD and brain metastases on multi-sequence MRI scans.

摘要

背景

无监督学习可以通过大规模的未标注医学图像发现各种未知的异常,这些图像来自健康的受检者。为此,无监督方法重建二维/三维单张医学图像,以检测特征空间中的异常值,或通过高重建损失检测异常值。然而,这些方法没有考虑到多个相邻切片之间的连续性,因此无法直接区分由细微解剖异常积累而成的疾病,如阿尔茨海默病(AD)。此外,尚无研究表明无监督异常检测与疾病阶段、多种(即,两种以上类型的)疾病或多序列磁共振成像(MRI)扫描之间存在何种关联。

结果

我们提出了一种新的基于生成对抗网络(GAN)的无监督医学异常检测方法,即 MADGAN,该方法使用基于 GAN 的多序列脑 MRI 切片重建来检测多序列结构 MRI 上不同阶段的脑异常:(重建)基于 Wasserstein 损失和梯度惩罚的[Formula: see text]损失,以 3 张健康脑轴位 MRI 切片为训练集,重建下 3 张切片,从而重建未知的健康/异常扫描;(诊断)每扫描一次的平均[Formula: see text]损失用于区分它们,比较真实/重建切片。在训练中,我们使用由 1133 张健康 T1 加权(T1)和 135 张健康对比增强 T1(T1c)脑 MRI 扫描组成的两个不同数据集,分别用于检测 AD 和脑转移瘤/多种疾病。我们的自注意 MADGAN 可以在非常早期阶段检测到 T1 扫描中的 AD(轻度认知障碍,AUC 为 0.727)和晚期 AD(AUC 为 0.894),并可以在 T1c 扫描中检测到脑转移瘤(AUC 为 0.921)。

结论

与医生的诊断方式类似,我们的第一个基于大量健康训练数据的多 MRI 切片重建方法 MADGAN 可以可靠地从之前的 3 张切片预测接下来的 3 张切片,仅适用于未知的健康图像。作为第一个无监督多种疾病诊断方法,MADGAN 可以可靠地检测多序列 MRI 扫描中细微解剖异常和高信号增强病变的积累,如(尤其是晚期)AD 和脑转移瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77f3/8073969/b443225b4209/12859_2020_3936_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验