Suppr超能文献

从眼前节 OCT 图像进行人口统计学预测和热点图生成:一项视觉转换器模型研究。

Demographics Prediction and Heatmap Generation From OCT Images of Anterior Segment of the Eye: A Vision Transformer Model Study.

机构信息

Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.

Department of Ophthalmology, Seoul National University Hospital Healthcare System Gangnam Center, Seoul National University College of Medicine, Seoul, Korea.

出版信息

Transl Vis Sci Technol. 2022 Nov 1;11(11):7. doi: 10.1167/tvst.11.11.7.

Abstract

PURPOSE

To predict demographic characteristics from anterior segment optical coherence tomography (AS-OCT) images of eyes using a Vision Transformer (ViT) model.

METHODS

A total of 2970 AS-OCT images were used to train, validate, and test a ViT to predict age and sex, and 2616 images were used for height, weight, and body mass index (BMI). The main outcome measure was the area under the receiver operating characteristic curve (AUC) of the ViT.

RESULTS

The ViT achieved the largest AUC (0.910) for differentiating age ≤75 versus >75 years, followed by age ≤60 versus 60-75 versus >75 years (AUC, 0.844), and for discriminating sex (AUC, 0.665). The prediction abilities for the other demographic characteristics were lower: an AUC of 0.521 for classifying height ≤170 versus >170 cm in males and ≤155 versus >155 cm in females; 0.522 for weight <70 versus ≥70 kg in males and 0.503 for <55 versus ≥55 kg in females, and 0.517 for BMI <23 versus 23-25 versus ≥25 kg/m2. Heatmaps highlighted the area of the iridocorneal angle for its contribution to the prediction of age ≤75 versus >75 years.

CONCLUSIONS

Although the ViT demonstrated a good ability to classify age from AS-OCT images, it performed poorly for sex, height, weight, and BMI. The heatmap obtained of the prediction will provide clues to understanding the age-related anterior segment changes in eyes.

TRANSLATIONAL RELEVANCE

The ViT can determine age-related anterior segment structural changes using AS-OCT images, which will aid clinicians in the management of ocular diseases.

摘要

目的

使用 Vision Transformer(ViT)模型从眼前节光学相干断层扫描(AS-OCT)图像预测人口统计学特征。

方法

共使用 2970 张 AS-OCT 图像来训练、验证和测试 ViT 以预测年龄和性别,2616 张图像用于预测身高、体重和体重指数(BMI)。主要观察指标是 ViT 的受试者工作特征曲线下面积(AUC)。

结果

ViT 在区分年龄≤75 岁与>75 岁方面的 AUC(0.910)最大,其次是区分年龄≤60 岁与 60-75 岁与>75 岁的 AUC(0.844),以及区分性别(AUC,0.665)。其他人口统计学特征的预测能力较低:男性身高≤170 与>170 cm 的分类 AUC 为 0.521,女性身高≤155 与>155 cm 的分类 AUC 为 0.521;男性体重<70 与≥70 kg 的 AUC 为 0.522,女性体重<55 与≥55 kg 的 AUC 为 0.503,BMI<23 与 23-25 与≥25 kg/m2 的 AUC 为 0.517。热图突出了虹膜角膜角的区域,因为它有助于预测年龄≤75 岁与>75 岁。

结论

尽管 ViT 显示出从 AS-OCT 图像分类年龄的良好能力,但在性别、身高、体重和 BMI 方面表现不佳。获得的预测热图将为理解眼睛与年龄相关的前段结构变化提供线索。

翻译的准确性和流畅度取决于原文的质量。如果原文存在语法错误、不流畅的表达或歧义,可能会影响翻译的准确性。因此,在评估翻译质量时,需要综合考虑原文的质量和翻译的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3137/9652725/689b3c4510c0/tvst-11-11-7-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验