Department of Ophthalmology, Seoul National University Hospital, Seoul, Korea.
Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.
PLoS One. 2022 Aug 11;17(8):e0270493. doi: 10.1371/journal.pone.0270493. eCollection 2022.
Anterior segment optical coherence tomography (AS-OCT) is a non-contact, rapid, and high-resolution in vivo modality for imaging of the eyeball's anterior segment structures. Because progressive anterior segment deformation is a hallmark of certain eye diseases such as angle-closure glaucoma, identification of AS-OCT structural changes over time is fundamental to their diagnosis and monitoring. Detection of pathologic damage, however, relies on the ability to differentiate it from normal, age-related structural changes.
This proposed large-scale, retrospective cross-sectional study will determine whether demographic characteristics including age can be predicted from deep learning analysis of AS-OCT images; it will also assess the importance of specific anterior segment areas of the eyeball to the prediction. We plan to extract, from SUPREME®, a clinical data warehouse (CDW) of Seoul National University Hospital (SNUH; Seoul, South Korea), a list of patients (at least 2,000) who underwent AS-OCT imaging between 2008 and 2020. AS-OCT images as well as demographic characteristics including age, gender, height, weight and body mass index (BMI) will be collected from electronic medical records (EMRs). The dataset of horizontal AS-OCT images will be split into training (80%), validation (10%), and test (10%) datasets, and a Vision Transformer (ViT) model will be built to predict demographics. Gradient-weighted Class Activation Mapping (Grad-CAM) will be used to visualize the regions of AS-OCT images that contributed to the model's decisions. The accuracy, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve (AUC) will be applied to evaluate the model performance.
This paper presents a study protocol for prediction of demographic characteristics from AS-OCT images of the eyeball using a deep learning model. The results of this study will aid clinicians in understanding and identifying age-related structural changes and other demographics-based structural differences.
Registration ID with open science framework: 10.17605/OSF.IO/FQ46X.
眼前节光学相干断层扫描(AS-OCT)是一种非接触、快速和高分辨率的活体成像方式,可用于成像眼球的眼前节结构。由于眼前节的进行性变形是某些眼病(如闭角型青光眼)的标志,因此随着时间的推移识别 AS-OCT 结构变化对于这些疾病的诊断和监测至关重要。然而,病理性损伤的检测依赖于将其与正常的、与年龄相关的结构变化区分开来的能力。
本研究拟通过深度学习分析 AS-OCT 图像,确定年龄等人口统计学特征是否可以从这些图像中预测;并评估眼球特定眼前节区域对预测的重要性。我们计划从首尔国立大学医院(SNUH;韩国首尔)的临床数据仓库(CDW)SUPREME®中提取 2008 年至 2020 年间接受 AS-OCT 成像的至少 2000 名患者的列表。AS-OCT 图像以及人口统计学特征,包括年龄、性别、身高、体重和体重指数(BMI),将从电子病历(EMR)中提取。水平 AS-OCT 图像数据集将分为训练集(80%)、验证集(10%)和测试集(10%),然后构建 Vision Transformer(ViT)模型来预测人口统计学特征。将使用梯度加权类激活映射(Grad-CAM)来可视化对模型决策有贡献的 AS-OCT 图像区域。将应用准确率、敏感度、特异度和受试者工作特征(ROC)曲线下面积(AUC)来评估模型性能。
本文提出了一种使用深度学习模型从眼球 AS-OCT 图像预测人口统计学特征的研究方案。该研究的结果将有助于临床医生理解和识别与年龄相关的结构变化和其他基于人口统计学的结构差异。
与开放科学框架的注册号:10.17605/OSF.IO/FQ46X。