Suppr超能文献

论功能网络引导下对复杂系统干预的局限性

On the limits of the intervention on complex systems guided by functional networks.

作者信息

Zanin Massimiliano

机构信息

Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus UIB, 07122, Palma, Spain.

出版信息

Sci Rep. 2025 Jul 1;15(1):22304. doi: 10.1038/s41598-025-08933-z.

Abstract

Complex networks, and functional networks in particular, have become a standard tool to understand the structure and dynamics of real-world complex systems. One usually hidden assumption is that the structure of the reconstructed functional networks encodes useful information to guide interventions on the physical layer, when the latter is not known. We here test this assumption using a minimal model, simulating a propagation process in a physical network, and guiding interventions using node properties observed in the corresponding functional representation. We show how this approach becomes less optimal the more complex the topology is; up to becoming marginally better than choosing nodes at random in the real case of the European air transport network.

摘要

复杂网络,尤其是功能网络,已成为理解现实世界复杂系统结构和动态的标准工具。一个通常隐含的假设是,当物理层结构未知时,重建的功能网络结构编码了有用信息以指导对物理层的干预。我们在此使用一个最小模型来检验这一假设,模拟物理网络中的传播过程,并使用在相应功能表示中观察到的节点属性来指导干预。我们展示了这种方法如何随着拓扑结构变得越复杂而变得越不理想;在欧洲航空运输网络的实际情况下,这种方法最终仅略优于随机选择节点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ff1/12216633/9d52c58c91d7/41598_2025_8933_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验