Zanin Massimiliano
Instituto de Física Interdisciplinar y Sistemas Complejos (CSIC-UIB), Campus UIB, 07122, Palma, Spain.
Sci Rep. 2025 Jul 1;15(1):22304. doi: 10.1038/s41598-025-08933-z.
Complex networks, and functional networks in particular, have become a standard tool to understand the structure and dynamics of real-world complex systems. One usually hidden assumption is that the structure of the reconstructed functional networks encodes useful information to guide interventions on the physical layer, when the latter is not known. We here test this assumption using a minimal model, simulating a propagation process in a physical network, and guiding interventions using node properties observed in the corresponding functional representation. We show how this approach becomes less optimal the more complex the topology is; up to becoming marginally better than choosing nodes at random in the real case of the European air transport network.
复杂网络,尤其是功能网络,已成为理解现实世界复杂系统结构和动态的标准工具。一个通常隐含的假设是,当物理层结构未知时,重建的功能网络结构编码了有用信息以指导对物理层的干预。我们在此使用一个最小模型来检验这一假设,模拟物理网络中的传播过程,并使用在相应功能表示中观察到的节点属性来指导干预。我们展示了这种方法如何随着拓扑结构变得越复杂而变得越不理想;在欧洲航空运输网络的实际情况下,这种方法最终仅略优于随机选择节点。