文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用深度学习的人工智能诊断结直肠癌黏膜下浸润深度

Diagnosis of Depth of Submucosal Invasion in Colorectal Cancer with AI Using Deep Learning.

作者信息

Minami Soichiro, Saso Kazuhiro, Miyoshi Norikatsu, Fujino Shiki, Kato Shinya, Sekido Yuki, Hata Tsuyoshi, Ogino Takayuki, Takahashi Hidekazu, Uemura Mamoru, Yamamoto Hirofumi, Doki Yuichiro, Eguchi Hidetoshi

机构信息

Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan.

Department of Innovative Oncology Research and Regenerative Medicine, Osaka International Cancer Institute, Osaka 541-8567, Japan.

出版信息

Cancers (Basel). 2022 Oct 31;14(21):5361. doi: 10.3390/cancers14215361.


DOI:10.3390/cancers14215361
PMID:36358780
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9656054/
Abstract

The submucosal invasion depth predicts prognosis in early colorectal cancer. Although colorectal cancer with shallow submucosal invasion can be treated via endoscopic resection, colorectal cancer with deep submucosal invasion requires surgical colectomy. However, accurately diagnosing the depth of submucosal invasion via endoscopy is difficult. We developed a tool to diagnose the depth of submucosal invasion in early colorectal cancer using artificial intelligence. We reviewed data from 196 patients who had undergone a preoperative colonoscopy at the Osaka University Hospital and Osaka International Cancer Institute between 2011 and 2018 and were diagnosed pathologically as having shallow submucosal invasion or deep submucosal invasion colorectal cancer. A convolutional neural network for predicting invasion depth was constructed using 706 images from 91 patients between 2011 and 2015 as the training dataset. The diagnostic accuracy of the constructed convolutional neural network was evaluated using 394 images from 49 patients between 2016 and 2017 as the validation dataset. We also prospectively tested the tool from 56 patients in 2018 with suspected early-stage colorectal cancer. The sensitivity, specificity, accuracy, and area under the curve of the convolutional neural network for diagnosing deep submucosal invasion colorectal cancer were 87.2% (258/296), 35.7% (35/98), 74.4% (293/394), and 0.758, respectively. The positive predictive value was 84.4% (356/422) and the sensitivity was 75.7% (356/470) in the test set. The diagnostic accuracy of the constructed convolutional neural network seemed to be as high as that of a skilled endoscopist. Thus, endoscopic image recognition by deep learning may be able to predict the submucosal invasion depth in early-stage colorectal cancer in clinical practice.

摘要

黏膜下层浸润深度可预测早期结直肠癌的预后。尽管黏膜下层浸润较浅的结直肠癌可通过内镜切除进行治疗,但黏膜下层浸润较深的结直肠癌则需要手术切除结肠。然而,通过内镜准确诊断黏膜下层浸润深度较为困难。我们开发了一种利用人工智能诊断早期结直肠癌黏膜下层浸润深度的工具。我们回顾了2011年至2018年间在大阪大学医院和大阪国际癌症研究所接受术前结肠镜检查且经病理诊断为黏膜下层浸润较浅或较深的结直肠癌的196例患者的数据。使用2011年至2015年间91例患者的706张图像作为训练数据集构建了用于预测浸润深度的卷积神经网络。使用2016年至2017年间49例患者的394张图像作为验证数据集评估所构建卷积神经网络的诊断准确性。我们还在2018年对56例疑似早期结直肠癌患者进行了该工具的前瞻性测试。诊断黏膜下层浸润较深的结直肠癌的卷积神经网络的敏感性、特异性、准确性和曲线下面积分别为87.2%(258/296)、35.7%(35/98)、74.4%(293/394)和0.758。在测试集中,阳性预测值为84.4%(356/422),敏感性为75.7%(356/470)。所构建卷积神经网络的诊断准确性似乎与熟练的内镜医师相当。因此,深度学习的内镜图像识别在临床实践中可能能够预测早期结直肠癌的黏膜下层浸润深度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d97/9656054/9d84569577d3/cancers-14-05361-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d97/9656054/c367157b91fa/cancers-14-05361-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d97/9656054/337874e418dc/cancers-14-05361-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d97/9656054/9d84569577d3/cancers-14-05361-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d97/9656054/c367157b91fa/cancers-14-05361-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d97/9656054/337874e418dc/cancers-14-05361-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d97/9656054/9d84569577d3/cancers-14-05361-g003.jpg

相似文献

[1]
Diagnosis of Depth of Submucosal Invasion in Colorectal Cancer with AI Using Deep Learning.

Cancers (Basel). 2022-10-31

[2]
Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy.

Gastrointest Endosc. 2018-11-16

[3]
Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth.

Gastrointest Endosc. 2021-9

[4]
Prediction of Submucosal Invasion for Gastric Neoplasms in Endoscopic Images Using Deep-Learning.

J Clin Med. 2020-6-15

[5]
Application of artificial intelligence using convolutional neural networks in determining the invasion depth of esophageal squamous cell carcinoma.

Esophagus. 2020-7

[6]
Chicken skin mucosa surrounding small colorectal cancer could be an endoscopic predictive marker of submucosal invasion.

World J Gastrointest Oncol. 2023-6-15

[7]
[Establishment and test results of an artificial intelligence burn depth recognition model based on convolutional neural network].

Zhonghua Shao Shang Za Zhi. 2020-11-20

[8]
Preoperative evaluation of early colorectal cancer using an ultrasound mini probe.

Hepatogastroenterology. 2012-9

[9]
Treatment response prediction of neoadjuvant chemotherapy for rectal cancer by deep learning of colonoscopy images.

Oncol Lett. 2023-9-20

[10]
Application of convolutional neural networks for evaluating the depth of invasion of early gastric cancer based on endoscopic images.

J Gastroenterol Hepatol. 2022-2

引用本文的文献

[1]
Research status and trends of deep learning in colorectal cancer (2011-2023): Bibliometric analysis and visualization.

World J Gastrointest Oncol. 2025-5-15

[2]
Advancements and limitations of image-enhanced endoscopy in colorectal lesion diagnosis and treatment selection: A narrative review.

DEN Open. 2025-5-8

[3]
Use of AI in Diagnostic Imaging and Future Prospects.

JMA J. 2025-1-15

[4]
Improving the endoscopic recognition of early colorectal carcinoma using artificial intelligence: current evidence and future directions.

Endosc Int Open. 2024-10-10

[5]
The role of deep learning in diagnosing colorectal cancer.

Prz Gastroenterol. 2023

[6]
Treatment response prediction of neoadjuvant chemotherapy for rectal cancer by deep learning of colonoscopy images.

Oncol Lett. 2023-9-20

[7]
A Contrast-Enhanced CT-Based Deep Learning System for Preoperative Prediction of Colorectal Cancer Staging and RAS Mutation.

Cancers (Basel). 2023-9-10

[8]
Artificial Intelligence Applied to Colonoscopy: Is It Time to Take a Step Forward?

Cancers (Basel). 2023-4-7

[9]
Artificial Intelligence in Oncology: A Topical Collection in 2022.

Cancers (Basel). 2023-2-7

[10]
Embedded Sensor Systems in Medical Devices: Requisites and Challenges Ahead.

Sensors (Basel). 2022-12-16

本文引用的文献

[1]
CLTS-GAN: Color-Lighting-Texture-Specular Reflection Augmentation for Colonoscopy.

Med Image Comput Comput Assist Interv. 2022-9

[2]
VR-Caps: A Virtual Environment for Capsule Endoscopy.

Med Image Anal. 2021-5

[3]
Role of Magnification Chromoendoscopy in the Management of Colorectal Neoplastic Lesions Suspicious for Submucosal Invasion.

Dis Colon Rectum. 2019-4

[4]
Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images.

Gastric Cancer. 2018-1-15

[5]
Cancer statistics, 2018.

CA Cancer J Clin. 2018-1-4

[6]
Comparison of the diagnostic performance between magnifying chromoendoscopy and magnifying narrow-band imaging for superficial colorectal neoplasms: an online survey.

Gastrointest Endosc. 2018-1-5

[7]
Magnifying Narrow Band Imaging (NBI) for the Diagnosis of Localized Colorectal Lesions Using the Japan NBI Expert Team (JNET) Classification.

Oncology. 2017

[8]
Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features.

BMC Bioinformatics. 2017-5-26

[9]
Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2016 for the treatment of colorectal cancer.

Int J Clin Oncol. 2018-2

[10]
Dermatologist-level classification of skin cancer with deep neural networks.

Nature. 2017-2-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索