Suppr超能文献

放射组学与人工智能可预测老年人孤立性肺结节的恶性程度。

Radiomics and Artificial Intelligence Can Predict Malignancy of Solitary Pulmonary Nodules in the Elderly.

作者信息

Elia Stefano, Pompeo Eugenio, Santone Antonella, Rigoli Rebecca, Chiocchi Marcello, Patirelis Alexandro, Mercaldo Francesco, Mancuso Leonardo, Brunese Luca

机构信息

Thoracic Surgery Unit, Policlinico Tor Vergata, 00133 Rome, Italy.

Department of Medicine and Health Sciences V. Tiberio, University of Molise, 86100 Campobasso, Italy.

出版信息

Diagnostics (Basel). 2023 Jan 19;13(3):384. doi: 10.3390/diagnostics13030384.

Abstract

Solitary pulmonary nodules (SPNs) are a diagnostic and therapeutic challenge for thoracic surgeons. Although such lesions are usually benign, the risk of malignancy remains significant, particularly in elderly patients, who represent a large segment of the affected population. Surgical treatment in this subset, which usually presents several comorbidities, requires careful evaluation, especially when pre-operative biopsy is not feasible and comorbidities may jeopardize the outcome. Radiomics and artificial intelligence (AI) are progressively being applied in predicting malignancy in suspicious nodules and assisting the decision-making process. In this study, we analyzed features of the radiomic images of 71 patients with SPN aged more than 75 years (median 79, IQR 76-81) who had undergone upfront pulmonary resection based on CT and PET-CT findings. Three different machine learning algorithms were applied-functional tree, Rep Tree and J48. Histology was malignant in 64.8% of nodules and the best predictive value was achieved by the J48 model (AUC 0.9). The use of AI analysis of radiomic features may be applied to the decision-making process in elderly frail patients with suspicious SPNs to minimize the false positive rate and reduce the incidence of unnecessary surgery.

摘要

孤立性肺结节(SPN)对胸外科医生来说是一个诊断和治疗上的挑战。尽管这类病变通常是良性的,但恶性风险仍然很大,尤其是在老年患者中,他们占受影响人群的很大一部分。这一亚组患者通常存在多种合并症,其手术治疗需要仔细评估,特别是在术前活检不可行且合并症可能危及手术结果时。放射组学和人工智能(AI)正逐渐应用于预测可疑结节的恶性程度并辅助决策过程。在本研究中,我们分析了71例年龄超过75岁(中位年龄79岁,四分位间距76 - 81岁)的SPN患者的放射组学图像特征,这些患者基于CT和PET - CT检查结果接受了直接肺切除术。应用了三种不同的机器学习算法——功能树算法、Rep Tree算法和J48算法。64.8%的结节组织学检查为恶性,J48模型取得了最佳预测值(曲线下面积为0.9)。对可疑SPN的老年体弱患者,使用放射组学特征的AI分析可应用于决策过程,以尽量减少假阳性率并降低不必要手术的发生率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dad5/9914272/d0022e724be0/diagnostics-13-00384-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验