Suppr超能文献

一项机器学习挑战:基于双心房和右心室应变及心脏功能检测心脏淀粉样变性

A Machine Learning Challenge: Detection of Cardiac Amyloidosis Based on Bi-Atrial and Right Ventricular Strain and Cardiac Function.

作者信息

Eckstein Jan, Moghadasi Negin, Körperich Hermann, Weise Valdés Elena, Sciacca Vanessa, Paluszkiewicz Lech, Burchert Wolfgang, Piran Misagh

机构信息

Institute for Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center North-Rhine Westphalia, Ruhr-University of Bochum, 32545 Bad Oeynhausen, Germany.

Department of Engineering Systems & Environment, University of Virginia, Charlottesville, VA 22904, USA.

出版信息

Diagnostics (Basel). 2022 Nov 4;12(11):2693. doi: 10.3390/diagnostics12112693.

Abstract

BACKGROUND

This study challenges state-of-the-art cardiac amyloidosis (CA) diagnostics by feeding multi-chamber strain and cardiac function into supervised machine (SVM) learning algorithms.

METHODS

Forty-three CA (32 males; 79 years (IQR 71; 85)), 20 patients with hypertrophic cardiomyopathy (HCM, 10 males; 63.9 years (±7.4)) and 44 healthy controls (CTRL, 23 males; 56.3 years (IQR 52.5; 62.9)) received cardiovascular magnetic resonance imaging. Left atrial, right atrial and right ventricular strain parameters and cardiac function generated a 41-feature matrix for decision tree (DT), k-nearest neighbor (KNN), SVM linear and SVM radial basis function (RBF) kernel algorithm processing. A 10-feature principal component analysis (PCA) was conducted using SVM linear and RBF.

RESULTS

Forty-one features resulted in diagnostic accuracies of 87.9% (AUC = 0.960) for SVM linear, 90.9% (0.996; Precision = 94%; Sensitivity = 100%; F1-Score = 97%) using RBF kernel, 84.9% (0.970) for KNN, and 78.8% (0.787) for DT. The 10-feature PCA achieved 78.9% (0.962) via linear SVM and 81.8% (0.996) via RBF SVM. Explained variance presented bi-atrial longitudinal strain and left and right atrial ejection fraction as valuable CA predictors.

CONCLUSION

SVM RBF kernel achieved competitive diagnostic accuracies under supervised conditions. Machine learning of multi-chamber cardiac strain and function may offer novel perspectives for non-contrast clinical decision-support systems in CA diagnostics.

摘要

背景

本研究通过将多腔室应变和心脏功能输入监督机器学习(SVM)算法,对心脏淀粉样变性(CA)的现有诊断方法提出了挑战。

方法

43例CA患者(32例男性;79岁(四分位间距71;85))、20例肥厚型心肌病(HCM)患者(10例男性;63.9岁(±7.4))和44例健康对照者(CTRL,23例男性;56.3岁(四分位间距52.5;62.9))接受了心血管磁共振成像。左心房、右心房和右心室应变参数以及心脏功能生成了一个41特征矩阵,用于决策树(DT)、k近邻(KNN)、SVM线性和SVM径向基函数(RBF)核算法处理。使用SVM线性和RBF进行了10特征主成分分析(PCA)。

结果

41个特征在SVM线性算法下诊断准确率为87.9%(AUC = 0.960),使用RBF核算法时为90.9%(0.996;精确率 = 94%;敏感度 = 100%;F1分数 = 97%),KNN为84.9%(0.970),DT为78.8%(0.787)。10特征PCA通过线性SVM达到78.9%(0.962),通过RBF SVM达到81.8%(0.996)。可解释方差显示双心房纵向应变以及左、右心房射血分数是有价值的CA预测指标。

结论

SVM RBF核算法在监督条件下取得了具有竞争力的诊断准确率。多腔室心脏应变和功能的机器学习可能为CA诊断中的非对比临床决策支持系统提供新的视角。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b28/9689404/777e7d464e59/diagnostics-12-02693-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验