School of Data Science, University of Virginia, Charlottesville, VA, 22903, USA.
Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, 10027, USA.
Sci Rep. 2022 May 31;12(1):9034. doi: 10.1038/s41598-022-12845-7.
For material modeling and discovery, synthetic microstructures play a critical role as digital twins. They provide stochastic samples upon which direct numerical simulations can be conducted to populate material databases. A large ensemble of simulation data on synthetic microstructures may provide supplemental data to inform and refine macroscopic material models, which might not be feasible from physical experiments alone. However, synthesizing realistic microstructures with realistic microstructural attributes is highly challenging. Thus, it is often oversimplified via rough approximations that may yield an inaccurate representation of the physical world. Here, we propose a novel deep learning method that can synthesize realistic three-dimensional microstructures with controlled structural properties using the combination of generative adversarial networks (GAN) and actor-critic (AC) reinforcement learning. The GAN-AC combination enables the generation of microstructures that not only resemble the appearances of real specimens but also yield user-defined physical quantities of interest (QoI). Our validation experiments confirm that the properties of synthetic microstructures generated by the GAN-AC framework are within a 5% error margin with respect to the target values. The scientific contribution of this paper resides in the novel design of the GAN-AC microstructure generator and the mathematical and algorithmic foundations therein. The proposed method will have a broad and substantive impact on the materials community by providing lenses for analyzing structure-property-performance linkages and for implementing the notion of 'materials-by-design'.
对于材料建模和发现,合成微结构作为数字孪生体起着至关重要的作用。它们提供了随机样本,可以对其进行直接数值模拟,从而填充材料数据库。大量关于合成微结构的模拟数据可以提供补充数据,以告知和改进宏观材料模型,这些模型仅通过物理实验可能是不可行的。然而,用真实的微观结构属性合成逼真的微观结构极具挑战性。因此,通常通过粗糙的近似来简化,这可能导致对物理世界的不准确表示。在这里,我们提出了一种新的深度学习方法,该方法可以使用生成对抗网络 (GAN) 和演员-评论家 (AC) 强化学习的组合来合成具有受控结构属性的逼真三维微结构。GAN-AC 组合可以生成不仅类似于真实样本外观的微结构,而且还可以产生用户定义的感兴趣的物理量 (QoI)。我们的验证实验证实,GAN-AC 框架生成的微观结构的特性与目标值的偏差在 5%以内。本文的科学贡献在于 GAN-AC 微观结构生成器的新颖设计及其内在的数学和算法基础。该方法将通过提供分析结构-性能关系的视角和实施“设计材料”的概念,对材料界产生广泛而实质性的影响。