Suppr超能文献

sp杂化单层半导体中键轨道分辨的压电性

Bond-Orbital-Resolved Piezoelectricity in Sp-Hybridized Monolayer Semiconductors.

作者信息

Wang Zongtan, Liu Yulan, Wang Biao

机构信息

School of Aeronautics and Astronautics, Sun Yat-sen University, Shenzhen 518000, China.

Sino-Franch Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.

出版信息

Materials (Basel). 2022 Nov 4;15(21):7788. doi: 10.3390/ma15217788.

Abstract

Sp-hybridized monolayer semiconductors (e.g., planar group III-V and IV-IV binary compounds) with inversion symmetry breaking (ISB) display piezoelectricity governed by their σ- and π-bond electrons. Here, we studied their bond-orbital-resolved electronic piezoelectricity (i.e., the σ- and π-piezoelectricity). We formulated a tight-binding piezoelectric model to reveal the different variations of σ- and π-piezoelectricity with the ISB strength (Δ). As Δ varied from positive to negative, the former decreased continuously, but the latter increased piecewise and jumped at Δ=0 due to the criticality of the π-electrons' ground-state geometry near this quantum phase-transition point. This led to a piezoelectricity predominated by the π-electrons for a small |Δ|. By constructing an analytical model, we clarified the microscopic mechanisms underlying the anomalous π-piezoelectricity and its subtle relations with the valley Hall effect. The validation of our models was justified by applying them to the typical sp monolayers including hexagonal silicon carbide, Boron-X (X = N, P, As, Ab), and a BN-doped graphene superlattice.

摘要

具有反演对称性破缺(ISB)的sp杂化单层半导体(例如平面III-V族和IV-IV族二元化合物)表现出由其σ键和π键电子支配的压电性。在此,我们研究了它们的键轨道分辨电子压电性(即σ压电性和π压电性)。我们建立了一个紧束缚压电模型,以揭示σ压电性和π压电性随ISB强度(Δ)的不同变化。当Δ从正值变为负值时,前者持续下降,但后者分段增加,并在Δ = 0处跳跃,这是由于在这个量子相变点附近π电子基态几何结构的临界性。这导致在小|Δ|时π电子主导压电性。通过构建一个解析模型,我们阐明了反常π压电性的微观机制及其与谷霍尔效应的微妙关系。通过将我们的模型应用于典型的sp单层,包括六方碳化硅、硼-X(X = N、P、As、Ab)和BN掺杂的石墨烯超晶格,验证了我们模型的合理性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/162b/9653688/1ecf87c20802/materials-15-07788-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验