Department of Computer Science and Engineering, Brac University, Dhaka 1212, Bangladesh.
Depatment of Computer Science and Engineering, Sejong University, Seoul 05006, Korea.
Sensors (Basel). 2022 Nov 2;22(21):8438. doi: 10.3390/s22218438.
In order to provide intelligent and efficient healthcare services in the Internet of Medical Things (IoMT), human action recognition (HAR) can play a crucial role. As a result of their stringent requirements, such as high computational complexity and memory efficiency, classical HAR techniques are not applicable to modern and intelligent healthcare services, e.g., IoMT. To address these issues, we present in this paper a novel HAR technique for healthcare services in IoMT. This model, referred to as the spatio-temporal graph convolutional network (STGCN), primarily aims at skeleton-based human-machine interfaces. By independently extracting spatial and temporal features, STGCN significantly reduces information loss. Spatio-temporal information is extracted independently of the exact spatial and temporal point, ensuring the extraction of useful features for HAR. Using only joint data and fewer parameters, we demonstrate that our proposed STGCN achieved 92.2% accuracy on the skeleton dataset. Unlike multi-channel methods, which use a combination of joint and bone data and have a large number of parameters, multi-channel methods use both joint and bone data. As a result, STGCN offers a good balance between accuracy, memory consumption, and processing time, making it suitable for detecting medical conditions.
为了在医疗物联网(IoMT)中提供智能高效的医疗服务,人体动作识别(HAR)可以发挥关键作用。由于其要求严格,例如计算复杂度和内存效率高,经典的 HAR 技术不适用于现代智能医疗服务,例如 IoMT。针对这些问题,本文提出了一种用于 IoMT 医疗服务的新型 HAR 技术。该模型称为时空图卷积网络(STGCN),主要针对基于骨架的人机接口。通过独立提取空间和时间特征,STGCN 显著减少了信息丢失。时空信息的提取与确切的时空点无关,确保了 HAR 中有用特征的提取。仅使用关节数据和较少的参数,我们证明我们提出的 STGCN 在骨架数据集上实现了 92.2%的准确率。与使用大量参数的多通道方法不同,多通道方法同时使用关节和骨骼数据。因此,STGCN 在准确性、内存消耗和处理时间之间取得了良好的平衡,非常适合检测医疗状况。