Suppr超能文献

基于移动网络的 SVM:一种轻量级的深度迁移学习模型,用于诊断基于 IoMT 的成像传感器的 BCH 扫描。

MobileNet-SVM: A Lightweight Deep Transfer Learning Model to Diagnose BCH Scans for IoMT-Based Imaging Sensors.

机构信息

Department of Multimedia Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania.

Department of Computer Science, Landmark University, Omu Aran 251103, Kwara, Nigeria.

出版信息

Sensors (Basel). 2023 Jan 6;23(2):656. doi: 10.3390/s23020656.

Abstract

Many individuals worldwide pass away as a result of inadequate procedures for prompt illness identification and subsequent treatment. A valuable life can be saved or at least extended with the early identification of serious illnesses, such as various cancers and other life-threatening conditions. The development of the Internet of Medical Things (IoMT) has made it possible for healthcare technology to offer the general public efficient medical services and make a significant contribution to patients' recoveries. By using IoMT to diagnose and examine BreakHis v1 400× breast cancer histology (BCH) scans, disorders may be quickly identified and appropriate treatment can be given to a patient. Imaging equipment having the capability of auto-analyzing acquired pictures can be used to achieve this. However, the majority of deep learning (DL)-based image classification approaches are of a large number of parameters and unsuitable for application in IoMT-centered imaging sensors. The goal of this study is to create a lightweight deep transfer learning (DTL) model suited for BCH scan examination and has a good level of accuracy. In this study, a lightweight DTL-based model "MobileNet-SVM", which is the hybridization of MobileNet and Support Vector Machine (SVM), for auto-classifying BreakHis v1 400× BCH images is presented. When tested against a real dataset of BreakHis v1 400× BCH images, the suggested technique achieved a training accuracy of 100% on the training dataset. It also obtained an accuracy of 91% and an F1-score of 91.35 on the test dataset. Considering how complicated BCH scans are, the findings are encouraging. The MobileNet-SVM model is ideal for IoMT imaging equipment in addition to having a high degree of precision. According to the simulation findings, the suggested model requires a small computation speed and time.

摘要

全球许多人因未能及时识别疾病并进行后续治疗而死亡。通过早期识别各种癌症和其他危及生命的疾病,如各种癌症和其他危及生命的疾病,可以挽救或至少延长宝贵的生命。医疗物联网(IoMT)的发展使得医疗技术能够为公众提供高效的医疗服务,并为患者的康复做出重大贡献。通过使用 IoMT 对 BreakHis v1 400×乳腺癌组织学(BCH)扫描进行诊断和检查,可以快速识别疾病,并为患者提供适当的治疗。具有自动分析获取图像能力的成像设备可用于实现这一点。然而,大多数基于深度学习(DL)的图像分类方法具有大量参数,不适合应用于以 IoMT 为中心的成像传感器。本研究的目的是创建一个适合 BCH 扫描检查的轻量级深度迁移学习(DTL)模型,具有较高的准确性。在这项研究中,提出了一种基于轻量级 DTL 的模型“MobileNet-SVM”,它是 MobileNet 和支持向量机(SVM)的混合体,用于自动对 BreakHis v1 400×BCH 图像进行分类。在对 BreakHis v1 400×BCH 真实数据集进行测试时,所提出的技术在训练数据集上的训练准确率达到 100%。在测试数据集上,它还获得了 91%的准确率和 91.35的 F1 分数。考虑到 BCH 扫描的复杂性,这一发现令人鼓舞。MobileNet-SVM 模型除了具有高精度外,还非常适合 IoMT 成像设备。根据模拟结果,建议的模型需要较小的计算速度和时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9c8/9863875/165d1aecdbd7/sensors-23-00656-g001.jpg

相似文献

本文引用的文献

3
A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection.一种用于转移性癌症检测的新型混合深度学习模型。
Comput Intell Neurosci. 2022 Jun 24;2022:8141530. doi: 10.1155/2022/8141530. eCollection 2022.
4
A Deep Learning Method for Breast Cancer Classification in the Pathology Images.深度学习方法在病理图像乳腺癌分类中的应用。
IEEE J Biomed Health Inform. 2022 Oct;26(10):5025-5032. doi: 10.1109/JBHI.2022.3187765. Epub 2022 Oct 4.
10
Imbalanced Breast Cancer Classification Using Transfer Learning.使用迁移学习的不平衡乳腺癌分类
IEEE/ACM Trans Comput Biol Bioinform. 2021 Jan-Feb;18(1):83-93. doi: 10.1109/TCBB.2020.2980831. Epub 2021 Feb 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验