Niels Bohr Institute, University of Copenhagen, Copenhagen, 2100, Denmark.
Niels Bohr Institute, University of Copenhagen, Copenhagen, 2100, Denmark.
Cell. 2022 Nov 10;185(23):4394-4408.e10. doi: 10.1016/j.cell.2022.10.004.
Living organisms are constantly exposed to DNA damage, and optimal repair is therefore crucial. A characteristic hallmark of the response is the formation of sub-compartments around the site of damage, known as foci. Following multiple DNA breaks, the transcription factor p53 exhibits oscillations in its nuclear concentration, but how this dynamics can affect the repair remains unknown. Here, we formulate a theory for foci formation through droplet condensation and discover how oscillations in p53, with its specific periodicity and amplitude, optimize the repair process by preventing Ostwald ripening and distributing protein material in space and time. Based on the theory predictions, we reveal experimentally that the oscillatory dynamics of p53 does enhance the repair efficiency. These results connect the dynamical signaling of p53 with the microscopic repair process and create a new paradigm for the interplay of complex dynamics and phase transitions in biology.
生物体不断受到 DNA 损伤的影响,因此最佳的修复至关重要。该反应的一个显著特征是在损伤部位周围形成亚区隔,称为焦点。在发生多次 DNA 断裂后,转录因子 p53 的核浓度会出现波动,但这种动力学如何影响修复过程尚不清楚。在这里,我们通过液滴冷凝形成焦点形成理论,并发现 p53 的波动如何通过其特定的周期性和幅度来优化修复过程,防止奥斯特瓦尔德熟化并在空间和时间上分配蛋白质材料。基于理论预测,我们实验揭示了 p53 的振荡动力学确实可以提高修复效率。这些结果将 p53 的动态信号与微观修复过程联系起来,并为生物学中复杂动力学和相变的相互作用创造了一个新的范例。