Suppr超能文献

共刺激分子基因在脓毒症诊断、预后及免疫微环境特征识别中的综合表征

Comprehensive characterization of costimulatory molecule gene for diagnosis, prognosis and recognition of immune microenvironment features in sepsis.

作者信息

Chen Zhen, Dong Xinhuai, Liu Genglong, Ou Yangpeng, Lu Chuangang, Yang Ben, Zhu Xuelian, Zuo Liuer

机构信息

Department of Intensive Care Unit, Shunde Hospital, Southern Medical University (The First people's hospital of Shunde), Foshan 528308, Guangdong Province, PR China.

Medical Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan 528308, Guangdong Province, PR China.

出版信息

Clin Immunol. 2022 Dec;245:109179. doi: 10.1016/j.clim.2022.109179. Epub 2022 Nov 8.

Abstract

The present study, which involved 10 GEO datasets and 3 ArrayExpress datasets, comprehensively characterized the potential effects of CMGs in sepsis. Based on machine learning algorithms (Lasso, SVM and ANN), the CMG classifier was constructed by integrating 6 hub CMGs (CD28, CD40, LTB, TMIGD2, TNFRSF13C and TNFSF4). The CMG classifier exhibit excellent diagnostic values across multiple datasets and time points, and was able to distinguish sepsis from other critical diseases. The CMG classifier performed better in predicting mortality than other clinical characteristics or endotypes. More importantly, from clinical specimens, the CMG classifier showed more superior diagnostic values than PCT and CRP. Alternatively, the CMG classifier/hub CMGs is significantly correlated with immune cells infiltration (B cells, T cells, Tregs, and MDSC), pivotal immune and molecular pathways (inflammation-promoting, complement and coagulation cascades), and several cytokines. Collectively, CMG classifier was a robust tool for diagnosis, prognosis and recognition of immune microenvironment features in sepsis.

摘要

本研究涉及10个基因表达综合数据库(GEO)数据集和3个ArrayExpress数据集,全面表征了CMG在脓毒症中的潜在作用。基于机器学习算法(套索回归、支持向量机和人工神经网络),通过整合6个关键CMG(CD28、CD40、LTB、TMIGD2、TNFRSF13C和TNFSF4)构建了CMG分类器。CMG分类器在多个数据集和时间点均表现出优异的诊断价值,能够区分脓毒症与其他危重病。CMG分类器在预测死亡率方面比其他临床特征或内型表现更好。更重要的是,从临床标本来看,CMG分类器比降钙素原(PCT)和C反应蛋白(CRP)表现出更优越的诊断价值。此外,CMG分类器/关键CMG与免疫细胞浸润(B细胞、T细胞、调节性T细胞和骨髓来源的抑制细胞)、关键免疫和分子途径(促炎、补体和凝血级联反应)以及几种细胞因子显著相关。总体而言,CMG分类器是诊断、预后评估以及识别脓毒症免疫微环境特征的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验