Suppr超能文献

评估评估 SARS-CoV-2 变异感染严重程度的方法学方法:范围综述及在比利时 COVID-19 数据上的应用。

Evaluating methodological approaches to assess the severity of infection with SARS-CoV-2 variants: scoping review and applications on Belgian COVID-19 data.

机构信息

Department of Epidemiology and Public Health, Sciensano, Brussels, Belgium.

IREC - EPID, Université Catholique de Louvain, Bruxelles, Belgium.

出版信息

BMC Infect Dis. 2022 Nov 11;22(1):839. doi: 10.1186/s12879-022-07777-6.

Abstract

BACKGROUND

Differences in the genetic material of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants may result in altered virulence characteristics. Assessing the disease severity caused by newly emerging variants is essential to estimate their impact on public health. However, causally inferring the intrinsic severity of infection with variants using observational data is a challenging process on which guidance is still limited. We describe potential limitations and biases that researchers are confronted with and evaluate different methodological approaches to study the severity of infection with SARS-CoV-2 variants.

METHODS

We reviewed the literature to identify limitations and potential biases in methods used to study the severity of infection with a particular variant. The impact of different methodological choices is illustrated by using real-world data of Belgian hospitalized COVID-19 patients.

RESULTS

We observed different ways of defining coronavirus disease 2019 (COVID-19) disease severity (e.g., admission to the hospital or intensive care unit versus the occurrence of severe complications or death) and exposure to a variant (e.g., linkage of the sequencing or genotyping result with the patient data through a unique identifier versus categorization of patients based on time periods). Different potential selection biases (e.g., overcontrol bias, endogenous selection bias, sample truncation bias) and factors fluctuating over time (e.g., medical expertise and therapeutic strategies, vaccination coverage and natural immunity, pressure on the healthcare system, affected population groups) according to the successive waves of COVID-19, dominated by different variants, were identified. Using data of Belgian hospitalized COVID-19 patients, we were able to document (i) the robustness of the analyses when using different variant exposure ascertainment methods, (ii) indications of the presence of selection bias and (iii) how important confounding variables are fluctuating over time.

CONCLUSIONS

When estimating the unbiased marginal effect of SARS-CoV-2 variants on the severity of infection, different strategies can be used and different assumptions can be made, potentially leading to different conclusions. We propose four best practices to identify and reduce potential bias introduced by the study design, the data analysis approach, and the features of the underlying surveillance strategies and data infrastructure.

摘要

背景

严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 变体的遗传物质差异可能导致毒力特征改变。评估新出现变体引起的疾病严重程度对于估计其对公共卫生的影响至关重要。然而,使用观察性数据从因果关系上推断感染变体的固有严重程度是一个具有挑战性的过程,目前对此指导仍然有限。我们描述了研究人员面临的潜在局限性和偏差,并评估了不同的方法来研究 SARS-CoV-2 变体感染的严重程度。

方法

我们回顾了文献,以确定研究特定变体感染严重程度的方法中存在的局限性和潜在偏差。通过使用比利时住院 COVID-19 患者的真实世界数据来阐明不同方法选择的影响。

结果

我们观察到定义 2019 年冠状病毒病 (COVID-19) 疾病严重程度的不同方法(例如,住院或重症监护病房与严重并发症或死亡的发生)和暴露于变体的不同方法(例如,通过唯一标识符将测序或基因分型结果与患者数据联系起来与根据时间段对患者进行分类)。根据 COVID-19 的连续波,即不同变体占主导地位,确定了不同的潜在选择偏差(例如,过度控制偏差、内源性选择偏差、样本截断偏差)和随时间波动的因素(例如,医疗专业知识和治疗策略、疫苗接种覆盖率和自然免疫力、医疗保健系统压力、受影响的人群群体)。使用比利时住院 COVID-19 患者的数据,我们能够记录(i)使用不同变体暴露确定方法进行分析的稳健性,(ii)存在选择偏差的迹象,以及(iii)随时间变化的重要混杂变量的重要性。

结论

当估计 SARS-CoV-2 变体对感染严重程度的无偏边际效应时,可以使用不同的策略并做出不同的假设,从而可能得出不同的结论。我们提出了四项最佳实践,以识别和减少研究设计、数据分析方法以及基础监测策略和数据基础设施的特征引入的潜在偏差。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6472/9652992/91b3829e9245/12879_2022_7777_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验