Suppr超能文献

实现钝性脾损伤 AAST 分级的自动化可解释性。

Toward automated interpretable AAST grading for blunt splenic injury.

机构信息

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.

Emergency and Trauma Imaging, Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.

出版信息

Emerg Radiol. 2023 Feb;30(1):41-50. doi: 10.1007/s10140-022-02099-1. Epub 2022 Nov 12.

Abstract

BACKGROUND

The American Association for the Surgery of Trauma (AAST) splenic organ injury scale (OIS) is the most frequently used CT-based grading system for blunt splenic trauma. However, reported inter-rater agreement is modest, and an algorithm that objectively automates grading based on transparent and verifiable criteria could serve as a high-trust diagnostic aid.

PURPOSE

To pilot the development of an automated interpretable multi-stage deep learning-based system to predict AAST grade from admission trauma CT.

METHODS

Our pipeline includes 4 parts: (1) automated splenic localization, (2) Faster R-CNN-based detection of pseudoaneurysms (PSA) and active bleeds (AB), (3) nnU-Net segmentation and quantification of splenic parenchymal disruption (SPD), and (4) a directed graph that infers AAST grades from detection and segmentation results. Training and validation is performed on a dataset of adult patients (age ≥ 18) with voxelwise labeling, consensus AAST grading, and hemorrhage-related outcome data (n = 174).

RESULTS

AAST classification agreement (weighted κ) between automated and consensus AAST grades was substantial (0.79). High-grade (IV and V) injuries were predicted with accuracy, positive predictive value, and negative predictive value of 92%, 95%, and 89%. The area under the curve for predicting hemorrhage control intervention was comparable between expert consensus and automated AAST grading (0.83 vs 0.88). The mean combined inference time for the pipeline was 96.9 s.

CONCLUSIONS

The results of our method were rapid and verifiable, with high agreement between automated and expert consensus grades. Diagnosis of high-grade lesions and prediction of hemorrhage control intervention produced accurate results in adult patients.

摘要

背景

美国创伤外科学会(AAST)的脾脏器官损伤分级(OIS)是最常用于钝性脾外伤的基于 CT 的分级系统。然而,报告的观察者间一致性适中,并且能够基于透明和可验证标准客观地自动进行分级的算法可以作为高度可信的诊断辅助工具。

目的

试点开发一种自动化可解释的多阶段深度学习为基础的系统,以便根据入院时的 CT 预测 AAST 分级。

方法

我们的流水线包括 4 个部分:(1)自动脾脏定位,(2)基于 Faster R-CNN 的假性动脉瘤(PSA)和活动性出血(AB)检测,(3)nnU-Net 分割和量化脾实质破裂(SPD),以及(4)一个有向图,该图从检测和分割结果推断出 AAST 分级。使用具有体素级别的成年患者数据集(年龄≥18 岁)进行训练和验证,共识 AAST 分级和与出血相关的结果数据(n=174)。

结果

自动与共识 AAST 分级之间的 AAST 分类一致性(加权 κ)很高(0.79)。高等级(IV 和 V)损伤的预测准确率、阳性预测值和阴性预测值分别为 92%、95%和 89%。预测出血控制干预的曲线下面积在专家共识和自动 AAST 分级之间相当(0.83 与 0.88)。该流水线的平均综合推断时间为 96.9 秒。

结论

我们的方法快速且可验证,自动分级与专家共识分级之间具有很高的一致性。在成年患者中,对高等级病变的诊断和对出血控制干预的预测产生了准确的结果。

相似文献

1
Toward automated interpretable AAST grading for blunt splenic injury.
Emerg Radiol. 2023 Feb;30(1):41-50. doi: 10.1007/s10140-022-02099-1. Epub 2022 Nov 12.
2
Interrater Agreement of CT Grading of Blunt Splenic Injuries: Does the AAST Grading Need to Be Reimagined?
Can Assoc Radiol J. 2024 Feb;75(1):171-177. doi: 10.1177/08465371231184425. Epub 2023 Jul 5.
5
Reliability of injury grading systems for patients with blunt splenic trauma.
Injury. 2014 Jan;45(1):146-50. doi: 10.1016/j.injury.2012.08.013. Epub 2012 Sep 21.
8
Emergency CT for assessment and management of blunt traumatic splenic injuries at a Level 1 Trauma Center: 13-year study.
Emerg Radiol. 2018 Oct;25(5):489-497. doi: 10.1007/s10140-018-1607-x. Epub 2018 May 12.

引用本文的文献

1
Artificial intelligence for abdominopelvic trauma imaging: trends, gaps, and future directions.
Abdom Radiol (NY). 2025 Mar 21. doi: 10.1007/s00261-025-04816-z.
2
The RSNA Abdominal Traumatic Injury CT (RATIC) Dataset.
Radiol Artif Intell. 2024 Nov;6(6):e240101. doi: 10.1148/ryai.240101.
3
Acute splenic hematoma: A rare complication of snake bite.
Clin Case Rep. 2024 May 12;12(5):e8921. doi: 10.1002/ccr3.8921. eCollection 2024 May.
4
Applications of deep learning in trauma radiology: A narrative review.
Biomed J. 2025 Feb;48(1):100743. doi: 10.1016/j.bj.2024.100743. Epub 2024 Apr 26.
5
Deep Learning for Automated Detection and Localization of Traumatic Abdominal Solid Organ Injuries on CT Scans.
J Imaging Inform Med. 2024 Jun;37(3):1113-1123. doi: 10.1007/s10278-024-01038-5. Epub 2024 Feb 16.
8
Pulmonary contusion: automated deep learning-based quantitative visualization.
Emerg Radiol. 2023 Aug;30(4):435-441. doi: 10.1007/s10140-023-02149-2. Epub 2023 Jun 15.
10
A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations.
Emerg Radiol. 2023 Jun;30(3):267-277. doi: 10.1007/s10140-023-02121-0. Epub 2023 Mar 13.

本文引用的文献

1
An Interpretable Approach to Automated Severity Scoring in Pelvic Trauma.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12903:424-433. doi: 10.1007/978-3-030-87199-4_40. Epub 2021 Sep 21.
2
Blunt splenic injury: Assessment of follow-up CT utility using quantitative volumetry.
Front Radiol. 2022 Jul;2. doi: 10.3389/fradi.2022.941863. Epub 2022 Jul 22.
3
A pilot study of deep learning-based CT volumetry for traumatic hemothorax.
Emerg Radiol. 2022 Dec;29(6):995-1002. doi: 10.1007/s10140-022-02087-5. Epub 2022 Aug 16.
4
The Medical Segmentation Decathlon.
Nat Commun. 2022 Jul 15;13(1):4128. doi: 10.1038/s41467-022-30695-9.
5
Blunt splenic injury in adults: Association between volumetric quantitative CT parameters and intervention.
J Trauma Acute Care Surg. 2023 Jan 1;94(1):125-132. doi: 10.1097/TA.0000000000003684. Epub 2022 May 12.
6
External Attention Assisted Multi-Phase Splenic Vascular Injury Segmentation With Limited Data.
IEEE Trans Med Imaging. 2022 Jun;41(6):1346-1357. doi: 10.1109/TMI.2021.3139637. Epub 2022 Jun 1.
7
Automated Spleen Injury Detection Using 3D Active Contours and Machine Learning.
Entropy (Basel). 2021 Mar 24;23(4):382. doi: 10.3390/e23040382.
8
American Society of Emergency Radiology Multicenter Blunt Splenic Trauma Study: CT and Clinical Findings.
Radiology. 2021 Apr;299(1):122-130. doi: 10.1148/radiol.2021202917. Epub 2021 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验