Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA.
Emergency and Trauma Imaging, Department of Diagnostic Radiology and Nuclear Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
Emerg Radiol. 2023 Feb;30(1):41-50. doi: 10.1007/s10140-022-02099-1. Epub 2022 Nov 12.
The American Association for the Surgery of Trauma (AAST) splenic organ injury scale (OIS) is the most frequently used CT-based grading system for blunt splenic trauma. However, reported inter-rater agreement is modest, and an algorithm that objectively automates grading based on transparent and verifiable criteria could serve as a high-trust diagnostic aid.
To pilot the development of an automated interpretable multi-stage deep learning-based system to predict AAST grade from admission trauma CT.
Our pipeline includes 4 parts: (1) automated splenic localization, (2) Faster R-CNN-based detection of pseudoaneurysms (PSA) and active bleeds (AB), (3) nnU-Net segmentation and quantification of splenic parenchymal disruption (SPD), and (4) a directed graph that infers AAST grades from detection and segmentation results. Training and validation is performed on a dataset of adult patients (age ≥ 18) with voxelwise labeling, consensus AAST grading, and hemorrhage-related outcome data (n = 174).
AAST classification agreement (weighted κ) between automated and consensus AAST grades was substantial (0.79). High-grade (IV and V) injuries were predicted with accuracy, positive predictive value, and negative predictive value of 92%, 95%, and 89%. The area under the curve for predicting hemorrhage control intervention was comparable between expert consensus and automated AAST grading (0.83 vs 0.88). The mean combined inference time for the pipeline was 96.9 s.
The results of our method were rapid and verifiable, with high agreement between automated and expert consensus grades. Diagnosis of high-grade lesions and prediction of hemorrhage control intervention produced accurate results in adult patients.
美国创伤外科学会(AAST)的脾脏器官损伤分级(OIS)是最常用于钝性脾外伤的基于 CT 的分级系统。然而,报告的观察者间一致性适中,并且能够基于透明和可验证标准客观地自动进行分级的算法可以作为高度可信的诊断辅助工具。
试点开发一种自动化可解释的多阶段深度学习为基础的系统,以便根据入院时的 CT 预测 AAST 分级。
我们的流水线包括 4 个部分:(1)自动脾脏定位,(2)基于 Faster R-CNN 的假性动脉瘤(PSA)和活动性出血(AB)检测,(3)nnU-Net 分割和量化脾实质破裂(SPD),以及(4)一个有向图,该图从检测和分割结果推断出 AAST 分级。使用具有体素级别的成年患者数据集(年龄≥18 岁)进行训练和验证,共识 AAST 分级和与出血相关的结果数据(n=174)。
自动与共识 AAST 分级之间的 AAST 分类一致性(加权 κ)很高(0.79)。高等级(IV 和 V)损伤的预测准确率、阳性预测值和阴性预测值分别为 92%、95%和 89%。预测出血控制干预的曲线下面积在专家共识和自动 AAST 分级之间相当(0.83 与 0.88)。该流水线的平均综合推断时间为 96.9 秒。
我们的方法快速且可验证,自动分级与专家共识分级之间具有很高的一致性。在成年患者中,对高等级病变的诊断和对出血控制干预的预测产生了准确的结果。