Suppr超能文献

用于控制空气传播感染风险的占用辅助通风:持续或间歇性降低占用率?

Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies?

作者信息

Zhang Sheng, Niu Dun, Lin Zhang

机构信息

School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, China.

Division of Building Science and Technology, City University of Hong Kong, Hong Kong, China.

出版信息

Build Simul. 2023;16(5):733-747. doi: 10.1007/s12273-022-0951-7. Epub 2022 Nov 5.

Abstract

Ventilation is an important engineering measure to control the airborne infection risk of acute respiratory diseases, e.g., Corona Virus Disease 2019 (COVID-19). Occupancy-aided ventilation methods can effectively improve the airborne infection risk control performance with a sacrifice of decreasing working productivity because of the reduced occupancy. This study evaluates the effectiveness of two occupancy-aided ventilation methods, i.e., the continuously reduced occupancy method and the intermittently reduced occupancy method. The continuously reduced occupancy method is determined by the steady equation of the mass conservation law of the indoor contaminant, and the intermittently reduced occupancy method is determined by a genetic algorithm-based optimization. A two-scenarios-based evaluation framework is developed, i.e., one with targeted airborne infection risk control performance (indicated by the mean rebreathed fraction) and the other with targeted working productivity (indicated by the accumulated occupancy). The results show that the improvement in the airborne infection risk control performance linearly and quadratically increases with the reduction in the working productivity for the continuously reduced occupancy method and the intermittently reduced occupancy method respectively. At a given targeted airborne infection risk control performance, the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the working productivity by up to 92%. At a given targeted working productivity, the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the airborne infection risk control performance by up to 38%.

摘要

通风是控制急性呼吸道疾病(如2019冠状病毒病,即COVID-19)空气传播感染风险的一项重要工程措施。有人在场辅助通风方法能够有效提高空气传播感染风险控制性能,但会因人员在场减少而牺牲工作效率。本研究评估了两种有人在场辅助通风方法的有效性,即持续减少在场人数方法和间歇减少在场人数方法。持续减少在场人数方法由室内污染物质量守恒定律的稳态方程确定,间歇减少在场人数方法由基于遗传算法的优化确定。开发了一个基于两种情景的评估框架,一种情景是具有目标空气传播感染风险控制性能(以平均再呼吸分数表示),另一种情景是具有目标工作效率(以累计在场人数表示)。结果表明,对于持续减少在场人数方法和间歇减少在场人数方法,空气传播感染风险控制性能的改善分别随着工作效率的降低呈线性和二次方增加。在给定的目标空气传播感染风险控制性能下,间歇减少在场人数方法通过将工作效率提高多达92%,优于持续减少在场人数方法。在给定的目标工作效率下,间歇减少在场人数方法通过将空气传播感染风险控制性能提高多达38%,优于持续减少在场人数方法。

相似文献

1
Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies?
Build Simul. 2023;16(5):733-747. doi: 10.1007/s12273-022-0951-7. Epub 2022 Nov 5.
2
Occupancy-aided ventilation for both airborne infection risk control and work productivity.
Build Environ. 2021 Jan 15;188:107506. doi: 10.1016/j.buildenv.2020.107506. Epub 2020 Dec 5.
3
Ventilation indices for evaluation of airborne infection risk control performance of air distribution.
Build Environ. 2022 Aug 15;222:109440. doi: 10.1016/j.buildenv.2022.109440. Epub 2022 Jul 31.
4
Intermittent occupancy combined with ventilation: An efficient strategy for the reduction of airborne transmission indoors.
Sci Total Environ. 2020 Nov 20;744:140908. doi: 10.1016/j.scitotenv.2020.140908. Epub 2020 Jul 15.
5
Contaminant removal and contaminant dispersion of air distribution for overall and local airborne infection risk controls.
Sci Total Environ. 2022 Aug 10;833:155173. doi: 10.1016/j.scitotenv.2022.155173. Epub 2022 Apr 11.
6
Dilution-based evaluation of airborne infection risk - Thorough expansion of Wells-Riley model.
Build Environ. 2021 May;194:107674. doi: 10.1016/j.buildenv.2021.107674. Epub 2021 Feb 9.
7
A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces.
Sci Total Environ. 2022 Mar 15;812:152592. doi: 10.1016/j.scitotenv.2021.152592. Epub 2021 Dec 23.
8
Estimating ventilation rates in rooms with varying occupancy levels: Relevance for reducing transmission risk of airborne pathogens.
PLoS One. 2021 Jun 24;16(6):e0253096. doi: 10.1371/journal.pone.0253096. eCollection 2021.
9
Evaluation of ventilation, indoor air quality, and probability of viral infection in an outdoor dining enclosure.
J Occup Environ Hyg. 2022 May;19(5):302-309. doi: 10.1080/15459624.2022.2053692. Epub 2022 Apr 6.
10
Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source.
Indoor Air. 2014 Feb;24(1):41-8. doi: 10.1111/ina.12047. Epub 2013 May 24.

引用本文的文献

2
Safe CO threshold limits for indoor long-range airborne transmission control of COVID-19.
Build Environ. 2023 Apr 15;234:109967. doi: 10.1016/j.buildenv.2022.109967. Epub 2022 Dec 30.

本文引用的文献

1
Integrated system of exhaust air heat pump and advanced air distribution for energy-efficient provision of outdoor air.
Appl Therm Eng. 2022 Nov 25;217:119256. doi: 10.1016/j.applthermaleng.2022.119256. Epub 2022 Sep 3.
2
Ventilation indices for evaluation of airborne infection risk control performance of air distribution.
Build Environ. 2022 Aug 15;222:109440. doi: 10.1016/j.buildenv.2022.109440. Epub 2022 Jul 31.
4
Contaminant removal and contaminant dispersion of air distribution for overall and local airborne infection risk controls.
Sci Total Environ. 2022 Aug 10;833:155173. doi: 10.1016/j.scitotenv.2022.155173. Epub 2022 Apr 11.
5
COVID-19: the case for aerosol transmission.
Interface Focus. 2022 Feb 11;12(2):20210072. doi: 10.1098/rsfs.2021.0072. eCollection 2022 Apr 6.
6
Robustness of ventilation systems in the control of walking-induced indoor fluctuations: Method development and case study.
Build Simul. 2022;15(9):1645-1660. doi: 10.1007/s12273-022-0888-x. Epub 2022 Feb 18.
7
Optimization of energy efficiency and COVID-19 pandemic control in different indoor environments.
Energy Build. 2022 Apr 15;261:111954. doi: 10.1016/j.enbuild.2022.111954. Epub 2022 Feb 16.
8
Metabolism-based ventilation monitoring and control method for COVID-19 risk mitigation in gymnasiums and alike places.
Sustain Cities Soc. 2022 May;80:103719. doi: 10.1016/j.scs.2022.103719. Epub 2022 Jan 29.
9
A review of different ventilation modes on thermal comfort, air quality and virus spread control.
Build Environ. 2022 Mar 15;212:108831. doi: 10.1016/j.buildenv.2022.108831. Epub 2022 Jan 29.
10
Practical Indicators for Risk of Airborne Transmission in Shared Indoor Environments and Their Application to COVID-19 Outbreaks.
Environ Sci Technol. 2022 Jan 18;56(2):1125-1137. doi: 10.1021/acs.est.1c06531. Epub 2022 Jan 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验